
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

UPCOMING EXAM
• Exam coming up this Friday 11/19

• Make-up exam on Wed 11/17 
• Administered on Gradescope: open-book, take-home
• Exam is open for 24 hours, you can take it in any 2-hour
• If you need an extension (OAE), please request it now!

• Highly recommend looking over the Exam Prep OH
slides and recording (see Ed for links)

• We covered exam topics, format, and studying tips; 
reviewed three key concepts



11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

…

Output: Node embeddings.
We can also embed larger network 
structures,  subgraphs, graphs
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

https://arxiv.org/pdf/2011.08843.pdf
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Today’s lecture: Can we make GNN 
representation more expressive?
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¡ A thought experiment: What should a perfect 
GNN do?
§ A 𝑘-layer GNN embeds a node based on the 𝐾-hop 

neighborhood structure

§ A perfect GNN should build an injective function 
between neighborhood structure (regardless of 
hops) and node embeddings
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¡ Therefore, for a perfect GNN:
§ Observation 1: If two nodes have the same neighborhood 

structure, they must have the same embedding

§ Observation 2: If two nodes have different neighborhood 
structure, they must have different embeddings
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¡ However, Observations 1 & 2 are imperfect
¡ Observation 1 could have issues:

§ Even though two nodes may have the same neighborhood 
structure, we may want to assign different embeddings to them

§ Because these nodes appear in different positions in the graph
§ We call these tasks Position-aware tasks
§ Even a perfect GNN will fail for these tasks:
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A grid graph NYC road network

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817


¡ Observation 2 often cannot be satisfied:
§ The GNNs we have introduced so far are not perfect
§ In Lecture 9, we discussed that their expressive power 

is upper bounded by the WL test
§ For example, message passing GNNs cannot count 

cycle length:
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𝑣! 𝑣"

𝑣! resides in a cycle 
with length 3

𝑣" resides in a cycle 
with length 4

…

!!

The computational graphs 
for nodes 𝒗𝟏 and 𝒗𝟐 are 
always the same

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


¡ We will resolve both issues by building more 
expressive GNNs

¡ Fix issues in Observation 1:
§ Create node embeddings based on their positions 

in the graph
§ Example method: Position-aware GNNs

¡ Fix issues in Observation 2:
§ Build message passing GNNs that are more 

expressive than WL test
§ Example method: Identity-aware GNNs
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¡ We use the following thinking:
§ Two different inputs (nodes, edges, graphs) are labeled differently
§ A “failed” model will always assign the same embedding to them
§ A “successful” model will assign different embeddings to them
§ Embeddings are determined by GNN computational graphs:
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!! !"A B

Two inputs: nodes 𝑣# and 𝑣$
Different labels: A and B
Goal: assign different embeddings to 𝑣# and 𝑣$



¡ A naïve solution: One-hot encoding
§ Encode each node with a different ID, then we can 

always differentiate different nodes/edges/graphs
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¡ A naïve solution: One-hot encoding
§ Encode each node with a different ID, then we can 

always differentiate different nodes/edges/graphs

§ Issues:
§ Not scalable: Need 𝑂(𝑁) feature dimensions (𝑁 is the 

number of nodes)
§ Not inductive: Cannot generalize to new nodes/graphs
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¡ There are two types of tasks on graphs
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Structure-aware task

Position-aware task
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¡ Nodes are labeled by 
their structural roles in 
the graph

¡ Nodes are labeled by 
their positions in the 
graph

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817


¡ GNNs often work well for structure-aware 
tasks
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¡ GNNs will always fail for position-aware 
tasks
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¡ GNNs fail L
¡ 𝑣% and 𝑣& will always 

have the same 
computational graph, 
due to structure 
symmetry

¡ Can we define deep 
learning methods that 
are position-aware?
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¡ Randomly pick a node 𝑠% as an anchor node
¡ Represent 𝑣% and 𝑣& via their relative distances w.r.t.

the anchor 𝑠%, which are different
¡ An anchor node serves as a coordinate axis

§ Which can be used to locate nodes in the graph
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¡ Pick more nodes 𝑠%, 𝑠& as anchor nodes
¡ Observation: More anchors can better characterize 

node position in different regions of the graph
¡ Many anchors –> Many coordinate axes
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¡ Generalize anchor from a single node to a set of nodes
§ We define distance to an anchor-set as the minimum distance 

to all the nodes in the ancho-set
¡ Observation: Large anchor-sets can sometimes provide 

more precise position estimate 
§ We can save the total number of anchors
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node 𝑣!, 𝑣#, but anchor-set 𝑠# can



¡ Goal: Embed the metric space 𝑉, 𝑑 into the 
Euclidian space ℝ! such that the original 
distance metric is preserved.
§ For every node pairs 𝑢, 𝑣 ∈ 𝑉, the Euclidian 

embedding distance 𝒛' − 𝒛( & is close to the 
original distance metric 𝑑 𝑢, 𝑣 .
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¡ Bourgain Theorem [Informal] [Bourgain 1985]

§ Consider the following embedding function of node 𝑣 ∈ 𝑉.
𝑓 𝑣 = 𝑑$%& 𝑣, 𝑆"," , 𝑑$%& 𝑣, 𝑆",# , … , 𝑑$%& 𝑣, 𝑆()* +,,()* + ∈ ℝ, ()*% +

§ where
§ 𝑐 is a constant.
§ 𝑆-,. ⊂ 𝑉 is chosen by including each node in 𝑉 independently with 

probability "
#'

.

§ 𝑑$%& 𝑣, 𝑆-,. ≡ min
/∈1',)

𝑑 𝑣, 𝑢 .

§ The embedding distance produced by 𝒇 is provably close to 
the original distance metric 𝑽, 𝒅 .
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¡ P-GNN follows the theory of Bourgain
theorem.
§ First samples 𝑂(log& 𝑛) anchor sets 𝑆8,9.  
§ Embed each node 𝑣 via

𝑑$%& 𝑣, 𝑆"," , 𝑑$%& 𝑣, 𝑆",# , … , 𝑑$%& 𝑣, 𝑆()* +,,()* + ∈ ℝ, ()*% +.

¡ P-GNN maintains the inductive capability.
§ During training, new anchor sets are re-sampled 

every time.
§ P-GNN is learned to operate over the new anchor 

sets.
§ At test time, given a new unseen graph, new 

anchor sets are sampled.
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¡ Position encoding for graphs: Represent a node’s 
position by its distance to randomly selected anchor-sets
§ Each dimension of the position encoding is tied to an anchor-set

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

𝑠# 𝑠$ 𝑠%
𝑣# 1 2 1
𝑣% 1 2 0

𝑣#

𝑣%

𝑠# 𝑠$

A

A

BA B

B
Size-2
Anchor-set

Anchor
𝑠%

𝑣!’s Position 
encoding

𝑣#’s Position 
encoding



¡ The simple way: Use position encoding as an 
augmented node feature (works well in 
practice)
§ Issue: since each dimension of position encoding is 

tied to a random anchor set, dimensions of 
positional encoding can be randomly permuted, 
without changing its meaning

§ Imagine you permute the input dimensions of a 
normal NN, the output will surely change
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¡ The rigorous solution: requires a special NN 
that can maintain the permutation invariant 
property of position encoding
§ Permuting the input feature dimension will only 

result in the permutation of the output dimension, 
the value in each dimension won’t change

§ Refer to the Position-aware GNN paper for more 
details
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¡ We learned that GNNs would fail for 
position-aware tasks

¡ But can GNN perform perfectly in structure-
aware tasks?
§ Unfortunately, NO.

¡ GNNs exhibit three levels of failure cases in 
structure-aware tasks:
§ Node level
§ Edge level
§ Graph level
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computational 
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¡ Idea: We can assign a color to the node we 
want to embed

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 33

𝑣"

𝑣!

𝑣#

…
𝑣" 𝑣#

𝑣!

𝑣# 𝑣!

𝑣"

𝑣! 𝑣"

𝑣#

𝑣" 𝑣#

𝑣!

𝑣" 𝑣#

𝑣!

To assist understanding,
we label the nodes

𝑣"

…

𝑣!

Input graph

The node we want to embed

The rest of nodes

Computational 
graph



¡ This coloring is inductive:
§ It is invariant to node ordering/identities
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¡ Inductive node coloring can help node classification
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¡ Inductive node coloring can help graph classification

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 36

ID-GNNs’ 
computational 
graphs

node with augmented identity

Example input 
graphs

Two types of nodes:
node without augmented identity

≠

A B

A B

We color root nodes with identity

Graph classification

For each node: For each node:

Different 
computational graphs
à Successful 
differentiate graphs



¡ Inductive node coloring can help link prediction
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An edge-level task involves 
classifying a pair of nodes:
1. We color one of the node (v$)
2. We then embed the other node in the 
node pair (v! or v")
3. We use the node embedding for v! or 
v" conditioned on 𝑣$ being colored or not 
to make edge-level prediction

Different 
computational graphs
à Successfully 
differentiate edges



¡ Inductive node coloring can help link prediction
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classifying a pair of nodes:
1. We color one of the node (v$)
2. We then embed the other node in the 
node pair (v! or v")
3. We use the node embedding for v! or 
v" conditioned on 𝑣$ being colored or not 
to make edge-level prediction

Different 
computational graphs
à Successful overcome 
GNN failure case

How to build a GNN using node coloring?



¡ Utilize inductive node coloring in embedding 
computation
§ Idea: Heterogenous message passing

§ Normally, a GNN applies the same message/aggregation 
computation to all the nodes
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𝑣!

Neural Net A

…

GNN: At a given layer, we apply 
the same message/aggregation to 
each node

(2) Aggregation

(1) Message

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


¡ Idea: Heterogenous message passing
§ Heterogenous: different types of message passing 

is applied to different nodes
§ An ID-GNN applies different message/aggregation 

to nodes with different colorings
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(1) Message
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(1) Message

ID-GNN: At a given layer, different 
message/aggregation to nodes 
with different colorings



¡ Output: Node embedding 𝒉"
($) for 𝑣 ∈ 𝒱.

¡ Step 1: Extract the ego-network
§ 𝒢(

(;): 𝐾-hop neighborhood graph around 𝑣
§ Set the initial node feature

§ For 𝑢 ∈ 𝒢(
(*), 𝒉,

(-) ← 𝒙, (input node feature)
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¡ Step 2: Heterogeneous message passing
§ For 𝑘 = 1,… , 𝐾 do

§ For 𝑢 ∈ 𝒢(
(*) do

𝒉𝒖
(𝒌) ← 𝐴𝐺𝐺(0) MSG𝟏 23(

(0) 𝒉2
(04#) , 𝑠 ∈ 𝑁(𝑢) , 𝒉,

(04#)
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Depending on whether 𝑠 = 𝑣 (𝑠 is the center 
node 𝑣) or not, we use different neural 
network functions to transform 𝒉%

('(!).



¡ Why does heterogenous message passing work: 
§ Suppose two nodes 𝑣#, 𝑣$ have the same computational 

graph structure, but have different node colorings
§ Since we will apply different neural network for embedding 

computation, their embeddings will be different
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¡ Why does ID-GNN work better than GNN?
¡ Intuition: ID-GNN can count cycles originating from 

a given node, but GNN cannot
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¡ Based on the intuition, we propose a simplified version 
ID-GNN-Fast
§ Include identity information as an augmented node feature 

(no need to do heterogenous message passing)
§ Use cycle counts in each layer as an augmented node 

feature. Also can be used together with any GNN
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¡ Summary of ID-GNN: A general and powerful 
extension to GNN framework
§ We can apply ID-GNN on any message passing 

GNNs (GCN, GraphSAGE, GIN, …)
§ ID-GNN provides consistent performance gain in 

node/edge/graph level tasks

§ ID-GNN is more expressive than their GNN 
counterparts. ID-GNN is the first message passing 
GNN that is more expressive than 1-WL test

§ We can easily implement ID-GNN using popular 
GNN tools (PyG, DGL, …)
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¡ Recent years have seen impressive 
performance of deep learning models in a 
variety of applications.
§ Ex) In computer vision, deep convolutional 

networks have achieved human-level performance 
on ImageNet (image category classification)

¡ Are these models ready to be deployed in 
real world?
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¡ Deep convolutional neural networks are 
vulnerable to adversarial attacks:
§ Imperceptible noise changes the prediction.
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Adopted from 
Goodfellow et al. 
ICLR 2015

Carefully-
calculated noise

Adversarial 
example

¡ Adversarial examples are also reported in natural 
language processing [Jia & Liang et al. EMNLP 2017] and audio 
processing [Carlini et al. 2018] domains.



¡ The existence of adversarial examples 
prevents the reliable deployment of deep 
learning models to the real world.
§ Adversaries may try to actively hack the deep 

learning models.
§ The model performance can become much worse 

than we expect.
¡ Deep learning models are often not robust. 
§ In fact, it is an active area of research to make 

these models robust against adversarial examples
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51

¡ This lecture: How about GNNs? Are they 
robust to adversarial examples?

¡ Premise: Common applications of GNNs 
involve public platforms and monetary 
interests.
§ Recommender systems
§ Social networks
§ Search engines

¡ Adversaries have the incentive to manipulate 
input graphs and hack GNNs’ predictions.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Zügner et al. Adversarial Attacks on Neural Networks for Graph Data, KDD 2018

https://arxiv.org/pdf/1805.07984.pdf


¡ To study the robustness of GNNs, we 
specifically consider the following setting:
§ Task: Semi-supervised node classification
§ Model: GCN [Kipf & Welling ICLR 2017]
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¡ We first describe several real-world 
adversarial aPack possibiliQes.

¡ We then review the GCN model that we are 
going to aQack (knowing the opponent).

¡ We mathemaRcally formalize the aPack 
problem as an opQmizaQon problem.

¡ We empirically see how vulnerable GCN’s 
predicQon is to the adversarial aPack.

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 53



¡ What are the attack possibilities in real world?
§ Target node 𝑡 ∈ 𝑉: node whose label prediction 

we want to change
§ Attacker nodes 𝑆 ⊂ 𝑉: nodes the attacker can 

modify
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Attacker node



¡ Direct Attack: Attacker node is the target
node: 𝑺 = 𝒕

¡ Modify target node feature
§ Ex) Change website content

¡ Add connections to target
§ Ex) Buy likes/followers

¡ Remove connections from target
§ Ex) Unfollow users
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¡ Indirect Attack: The target node is not in the 
attacker nodes: 𝒕 ∉ 𝑺

¡ Modify attacker node features
§ Ex) Hijack friends of targets

¡ Add connections to attackers
§ Ex) Create a link, link farm

¡ Remove connections from attackers
§ Ex) Delete undesirable link
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¡ Objective for the attacker:
Maximize (change of target node label prediction)
Subject to (graph manipulation is small)
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If graph manipulation is too large, it will easily be detected.
Successful attacks should change the target prediction 
with “unnoticeably-small” graph manipulation.



¡ Original graph:
§ 𝑨: adjacency matrix, 𝑿: feature matrix

¡ Manipulated graph (aXer adding noise): 
§ 𝑨=: adjacency matrix, 𝑿=: feature matrix

¡ AssumpQon: 𝑨=, 𝑿= ≈ (𝑨, 𝑿)
§ Graph manipula;on is unno7ceably small.

§ Preserving basic graph staRsRcs (e.g,. degree 
distribuRon) and feature staRsRcs.

§ Graph manipula;on is either direct (changing the 
feature/connec;on of target nodes) or indirect.
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¡ Overview of the attack framework
§ Original adjacency matrix 𝑨, node features 𝑿, 

node labels 𝒀.
§ 𝜽∗ : Model parameter learned over 𝑨,𝑿, 𝒀.

§ 𝑐(∗: class label of node 𝑣 predicted by GCN with 𝜽∗

§ An attacker has access to 𝑨,𝑿, 𝒀, and the learning 
algorithm.

§ The attacker modifies (𝑨, 𝑿) into 𝑨=, 𝑿= .
§ 𝜽∗=: Model parameter learned over 𝑨=, 𝑿=, 𝒀.

§ 𝑐(∗9: class label of node 𝑣 predicted by GCN with 𝜽∗9

§ The goal of the attacker is to make 𝑐(∗= ≠ 𝑐(∗.
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¡ Target node: 𝑣 ∈ 𝑉
¡ GCN learned over the original graph

𝜽∗ = argmin𝜽ℒ()*+, 𝜽; 𝑨, 𝑿

¡ GCN’s original prediction on the target node:
𝑐(∗ = 𝐚𝐫𝐠𝐦𝐚𝐱?𝑓𝜽∗ 𝑨,𝑿 (,?
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Predict the class 𝑐*∗ of vertex 𝒗 that has 
the highest predicted probability



¡ GCN learned over the manipulated graph
𝜽∗- = argmin𝜽ℒ()*+, 𝜽; 𝑨′, 𝑿′

¡ GCN’s predicRon on the target node 𝒗:
𝑐(∗= = argmax?𝑓𝜽∗" 𝑨′, 𝑿′ (,?

¡ We want the predicQon to change aXer the 
graph is manipulated:

𝑐"∗- ≠ 𝑐"∗
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¡ Change of prediction on target node 𝑣:
𝚫 𝑣; 𝑨-, 𝑿- =
log 𝑓𝜽∗" 𝑨′, 𝑿′ ",/#∗" − log 𝑓𝜽∗" 𝑨′, 𝑿′ ",/#∗
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¡ Final opQmizaQon objecQve:
argmax𝑨",𝑿"𝚫(𝑣; 𝑨′, 𝑿′)
subject to 𝑨-, 𝑿- ≈ (𝑨, 𝑿)

¡ Challenges in opQmizing the objecQve
§ Adjacency matrix 𝑨9 is a discrete object: gradient-based 

opRmizaRon cannot be used.
§ For every modified graph 𝑨9 and 𝑿9, GCN needs to be re-

trained (this is computaRonally expensive):
§ 𝜽∗9 = argmin𝜽ℒ<=>?@ 𝜽; 𝑨′, 𝑿′

¡ Several approximaRons are proposed to make the opRmizaRon 
tractable [Zügner et al. KDD2018].
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¡ Setting: Semi-supervised node classification 
with GCN 

¡ Graph: Paper citation network (2,800 nodes, 
8,000 edges).

¡ Attack type: Edge modification (addition or 
deletion of edges)

¡ Attack budget on node v: 𝑑" + 2 
modifications (𝑑": degree of node 𝑣). 
§ Intuition: It is harder to attack a node with a 

larger degree.
¡ Model is trained and attacked 5 times using 

different random seeds.
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(correct)

Class 7

Classification margin
> 0: Correct classification
< 0: Incorrect classification

Predicted probabilities of a target node 𝑣 over 5 re-
trainings (each bar represents a single trial) 
(without graph manipulation, i.e., clean graph)

GCN is able to correctly 
classify the target node 
with high confidence.

7-class classification



GCN’s prediction after modifying 5 edges attached to 
the target node (direct adversarial attack).
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(correct)

Class 7

Predicted probabilities over 5 re-trainings
(with adversarial attacks)

The model confidently makes 
the wrong prediction



¡ Adversarial direct attack
is the strongest attack, 
significantly worsening 
GCN’s performance 
(compared to no attack).

¡ Random attack is much 
weaker than adversarial
attack.

¡ Indirect attack is more 
challenging than direct 
attack. 
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¡ We study the adversarial robustness of GCN 
applied to semi-supervised node classification.

¡ We consider different attack possibilities on 
graph-structured data.

¡ We mathematically formulate the adversarial 
attack as an optimization problem.

¡ We empirically demonstrate that GCN’s prediction 
performance can be significantly harmed by 
adversarial attacks.

¡ GCN is not robust to adversarial attacks but it is 
somewhat robust to indirect attacks and random 
noise.
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