
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

UPCOMING EXAM
• Exam coming up this Friday 11/19

• Make-up exam on Wed 11/17
• Administered on Gradescope: open-book, take-home
• Exam is open for 24 hours, you can take it in any 2-hour
• If you need an extension (OAE), please request it now!

• Highly recommend looking over the Exam Prep OH
slides and recording (see Ed for links)

• We covered exam topics, format, and studying tips;
reviewed three key concepts

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

…

Output: Node embeddings.
We can also embed larger network
structures, subgraphs, graphs

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

https://arxiv.org/pdf/2011.08843.pdf

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Today’s lecture: Can we make GNN
representation more expressive?

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ A thought experiment: What should a perfect
GNN do?
§ A 𝑘-layer GNN embeds a node based on the 𝐾-hop

neighborhood structure

§ A perfect GNN should build an injective function
between neighborhood structure (regardless of
hops) and node embeddings

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 7

¡ Therefore, for a perfect GNN:
§ Observation 1: If two nodes have the same neighborhood

structure, they must have the same embedding

§ Observation 2: If two nodes have different neighborhood
structure, they must have different embeddings

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 8

𝑣! 𝑣"

𝑣#

ℎ!$ = ℎ!%

ℎ!$ ≠ ℎ!&𝑣!

¡ However, Observations 1 & 2 are imperfect
¡ Observation 1 could have issues:

§ Even though two nodes may have the same neighborhood
structure, we may want to assign different embeddings to them

§ Because these nodes appear in different positions in the graph
§ We call these tasks Position-aware tasks
§ Even a perfect GNN will fail for these tasks:

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 9

𝑣"

𝑣#

𝑣"

𝑣#

A grid graph NYC road network

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817

¡ Observation 2 often cannot be satisfied:
§ The GNNs we have introduced so far are not perfect
§ In Lecture 9, we discussed that their expressive power

is upper bounded by the WL test
§ For example, message passing GNNs cannot count

cycle length:

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

𝑣! 𝑣"

𝑣! resides in a cycle
with length 3

𝑣" resides in a cycle
with length 4

…

!!

The computational graphs
for nodes 𝒗𝟏 and 𝒗𝟐 are
always the same

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

¡ We will resolve both issues by building more
expressive GNNs

¡ Fix issues in Observation 1:
§ Create node embeddings based on their positions

in the graph
§ Example method: Position-aware GNNs

¡ Fix issues in Observation 2:
§ Build message passing GNNs that are more

expressive than WL test
§ Example method: Identity-aware GNNs

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

¡ We use the following thinking:
§ Two different inputs (nodes, edges, graphs) are labeled differently
§ A “failed” model will always assign the same embedding to them
§ A “successful” model will assign different embeddings to them
§ Embeddings are determined by GNN computational graphs:

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 12

!! !"A B

Two inputs: nodes 𝑣# and 𝑣$
Different labels: A and B
Goal: assign different embeddings to 𝑣# and 𝑣$

¡ A naïve solution: One-hot encoding
§ Encode each node with a different ID, then we can

always differentiate different nodes/edges/graphs

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13

!! !"A B
1000

0100

0001

1000 0100

0010 0001

…

!!0100 0001

…

!!0010 0100

Input graphs

Computational
graphs

Computational
graphs are clearly
different if each
node has a
different ID

𝑣!

¡ A naïve solution: One-hot encoding
§ Encode each node with a different ID, then we can

always differentiate different nodes/edges/graphs

§ Issues:
§ Not scalable: Need 𝑂(𝑁) feature dimensions (𝑁 is the

number of nodes)
§ Not inductive: Cannot generalize to new nodes/graphs

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14

!! !"A B
1000

0100

0001

1000 0100

0010 0001

Input graphs

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ There are two types of tasks on graphs

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16

Structure-aware task

Position-aware task
!" !#A

A

BA B

B

!"
!#

A

A

B
A

A

B

¡ Nodes are labeled by
their structural roles in
the graph

¡ Nodes are labeled by
their positions in the
graph

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817

¡ GNNs often work well for structure-aware
tasks

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 17

Structure-aware task

!"
!#

A

A

B
A

A

B
¡ GNNs work J
¡ Can differentiate 𝑣% and
𝑣& by using different
computational graphs

!" !#

≠

… … … …

A B

¡ GNNs will always fail for position-aware
tasks

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 18

¡ GNNs fail L
¡ 𝑣% and 𝑣& will always

have the same
computational graph,
due to structure
symmetry

¡ Can we define deep
learning methods that
are position-aware?

Position-aware task
!" !#A

A

BA B

B

!" !#

=

… … … …

A B

¡ Randomly pick a node 𝑠% as an anchor node
¡ Represent 𝑣% and 𝑣& via their relative distances w.r.t.

the anchor 𝑠%, which are different
¡ An anchor node serves as a coordinate axis

§ Which can be used to locate nodes in the graph

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 19

𝑣#
𝑠#

𝑣$A

A

BA B

BAnchor

𝑠#
𝑣# 1
𝑣$ 2

Relative
Distances

¡ Pick more nodes 𝑠%, 𝑠& as anchor nodes
¡ Observation: More anchors can better characterize

node position in different regions of the graph
¡ Many anchors –> Many coordinate axes

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

𝑠# 𝑠$
𝑣# 1 2
𝑣$ 2 1

𝑣#
𝑠#

𝑣$
𝑠$

A

A

BA B

BAnchor Anchor

Relative
Distances

¡ Generalize anchor from a single node to a set of nodes
§ We define distance to an anchor-set as the minimum distance

to all the nodes in the ancho-set
¡ Observation: Large anchor-sets can sometimes provide

more precise position estimate
§ We can save the total number of anchors

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

𝑠# 𝑠$ 𝑠%
𝑣# 1 2 1
𝑣% 1 2 0

Relative Distances
𝑣#

𝑣%

𝑠# 𝑠$

A

A

BA B

B
Size-2
Anchor-set

Anchor
𝑠%

Anchor 𝑠!, 𝑠" cannot differentiate
node 𝑣!, 𝑣#, but anchor-set 𝑠# can

¡ Goal: Embed the metric space 𝑉, 𝑑 into the
Euclidian space ℝ! such that the original
distance metric is preserved.
§ For every node pairs 𝑢, 𝑣 ∈ 𝑉, the Euclidian

embedding distance 𝒛' − 𝒛(& is close to the
original distance metric 𝑑 𝑢, 𝑣 .

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 22

¡ Bourgain Theorem [Informal] [Bourgain 1985]

§ Consider the following embedding function of node 𝑣 ∈ 𝑉.
𝑓 𝑣 = 𝑑$%& 𝑣, 𝑆"," , 𝑑$%& 𝑣, 𝑆",# , … , 𝑑$%& 𝑣, 𝑆()* +,,()* + ∈ ℝ, ()*% +

§ where
§ 𝑐 is a constant.
§ 𝑆-,. ⊂ 𝑉 is chosen by including each node in 𝑉 independently with

probability "
#'

.

§ 𝑑$%& 𝑣, 𝑆-,. ≡ min
/∈1',)

𝑑 𝑣, 𝑢 .

§ The embedding distance produced by 𝒇 is provably close to
the original distance metric 𝑽, 𝒅 .

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 23

¡ P-GNN follows the theory of Bourgain
theorem.
§ First samples 𝑂(log& 𝑛) anchor sets 𝑆8,9.
§ Embed each node 𝑣 via

𝑑$%& 𝑣, 𝑆"," , 𝑑$%& 𝑣, 𝑆",# , … , 𝑑$%& 𝑣, 𝑆()* +,,()* + ∈ ℝ, ()*% +.

¡ P-GNN maintains the inductive capability.
§ During training, new anchor sets are re-sampled

every time.
§ P-GNN is learned to operate over the new anchor

sets.
§ At test time, given a new unseen graph, new

anchor sets are sampled.
11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 24

¡ Position encoding for graphs: Represent a node’s
position by its distance to randomly selected anchor-sets
§ Each dimension of the position encoding is tied to an anchor-set

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

𝑠# 𝑠$ 𝑠%
𝑣# 1 2 1
𝑣% 1 2 0

𝑣#

𝑣%

𝑠# 𝑠$

A

A

BA B

B
Size-2
Anchor-set

Anchor
𝑠%

𝑣!’s Position
encoding

𝑣#’s Position
encoding

¡ The simple way: Use position encoding as an
augmented node feature (works well in
practice)
§ Issue: since each dimension of position encoding is

tied to a random anchor set, dimensions of
positional encoding can be randomly permuted,
without changing its meaning

§ Imagine you permute the input dimensions of a
normal NN, the output will surely change

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 26

¡ The rigorous solution: requires a special NN
that can maintain the permutation invariant
property of position encoding
§ Permuting the input feature dimension will only

result in the permutation of the output dimension,
the value in each dimension won’t change

§ Refer to the Position-aware GNN paper for more
details

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 27

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ We learned that GNNs would fail for
position-aware tasks

¡ But can GNN perform perfectly in structure-
aware tasks?
§ Unfortunately, NO.

¡ GNNs exhibit three levels of failure cases in
structure-aware tasks:
§ Node level
§ Edge level
§ Graph level

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 29

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Existing GNNs’
computational
graphs

𝑣! 𝑣"A B

=

…

𝑣!

…

𝑣"A B

Example input
graphs

Different Inputs but the same computational graph à GNN fails

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 31

B

𝑣2

𝑣" 𝑣#

…

𝑣" A B

…

𝑣#

A

=

Different Inputs but the same computational graph à GNN fails

Existing GNNs’
computational
graphs

Example input
graphs

Edge A and B share
node 𝑣$
We look at embeddings
for 𝑣! and 𝑣"

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 32

Existing GNNs’
computational
graphs

A B

We look at embeddings
for each node

=

A B

Example input
graphs

Different Inputs but the same computational graph à GNN fails

For each node: For each node:

¡ Idea: We can assign a color to the node we
want to embed

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 33

𝑣"

𝑣!

𝑣#

…
𝑣" 𝑣#

𝑣!

𝑣# 𝑣!

𝑣"

𝑣! 𝑣"

𝑣#

𝑣" 𝑣#

𝑣!

𝑣" 𝑣#

𝑣!

To assist understanding,
we label the nodes

𝑣"

…

𝑣!

Input graph

The node we want to embed

The rest of nodes

Computational
graph

¡ This coloring is inductive:
§ It is invariant to node ordering/identities

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

𝑣"

𝑣#

𝑣!

…
𝑣# 𝑣"

𝑣!

𝑣" 𝑣!

𝑣#

𝑣! 𝑣#

𝑣"

𝑣# 𝑣"

𝑣!

𝑣# 𝑣"

𝑣!

Permute the node ordering
between 𝑣" and 𝑣#

Input graph

The node we want to embed

The rest of nodes

Computational
graph

𝑣"

𝑣!

𝑣#

…
𝑣" 𝑣#

𝑣!

𝑣# 𝑣!

𝑣"

𝑣! 𝑣"

𝑣#

𝑣" 𝑣#

𝑣!

𝑣" 𝑣#

𝑣!

The computational graph stays the same

¡ Inductive node coloring can help node classification

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 35

ID-GNNs’
computational
graphs

≠

…

!!

…

!"A B

node with augmented identity

We color root nodes with identity

!! !"A B

Node classification

Example input
graphs

Two types of nodes:
node without augmented identity

Different
computational graphs
à Successfully
differentiate nodes

¡ Inductive node coloring can help graph classification

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 36

ID-GNNs’
computational
graphs

node with augmented identity

Example input
graphs

Two types of nodes:
node without augmented identity

≠

A B

A B

We color root nodes with identity

Graph classification

For each node: For each node:

Different
computational graphs
à Successful
differentiate graphs

¡ Inductive node coloring can help link prediction

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 37

ID-GNNs’
computational
graphs

node with augmented identity

Example input
graphs

Two types of nodes:
node without augmented identity

B

!!

!" !#

Link prediction

A

…

!" A B

…

!#≠

An edge-level task involves
classifying a pair of nodes:
1. We color one of the node (v$)
2. We then embed the other node in the
node pair (v! or v")
3. We use the node embedding for v! or
v" conditioned on 𝑣$ being colored or not
to make edge-level prediction

Different
computational graphs
à Successfully
differentiate edges

¡ Inductive node coloring can help link prediction

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 38

ID-GNNs’
computational
graphs

node with augmented identity

Example input
graphs

Two types of nodes:
node without augmented identity

B

!!

!" !#

Link prediction

A

…

!" A B

…

!#≠

An edge-level task involves
classifying a pair of nodes:
1. We color one of the node (v$)
2. We then embed the other node in the
node pair (v! or v")
3. We use the node embedding for v! or
v" conditioned on 𝑣$ being colored or not
to make edge-level prediction

Different
computational graphs
à Successful overcome
GNN failure case

How to build a GNN using node coloring?

¡ Utilize inductive node coloring in embedding
computation
§ Idea: Heterogenous message passing

§ Normally, a GNN applies the same message/aggregation
computation to all the nodes

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 39

𝑣!

Neural Net A

…

GNN: At a given layer, we apply
the same message/aggregation to
each node

(2) Aggregation

(1) Message

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

¡ Idea: Heterogenous message passing
§ Heterogenous: different types of message passing

is applied to different nodes
§ An ID-GNN applies different message/aggregation

to nodes with different colorings

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 40

…

𝑣!

Neural Net A Neural Net B(2) Aggregation

(1) Message

(2) Aggregation

(1) Message

ID-GNN: At a given layer, different
message/aggregation to nodes
with different colorings

¡ Output: Node embedding 𝒉"
($) for 𝑣 ∈ 𝒱.

¡ Step 1: Extract the ego-network
§ 𝒢(

(;): 𝐾-hop neighborhood graph around 𝑣
§ Set the initial node feature

§ For 𝑢 ∈ 𝒢(
(*), 𝒉,

(-) ← 𝒙, (input node feature)

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 41

¡ Step 2: Heterogeneous message passing
§ For 𝑘 = 1,… , 𝐾 do

§ For 𝑢 ∈ 𝒢(
(*) do

𝒉𝒖
(𝒌) ← 𝐴𝐺𝐺(0) MSG𝟏 23(

(0) 𝒉2
(04#) , 𝑠 ∈ 𝑁(𝑢) , 𝒉,

(04#)

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 42

Depending on whether 𝑠 = 𝑣 (𝑠 is the center
node 𝑣) or not, we use different neural
network functions to transform 𝒉%

('(!).

¡ Why does heterogenous message passing work:
§ Suppose two nodes 𝑣#, 𝑣$ have the same computational

graph structure, but have different node colorings
§ Since we will apply different neural network for embedding

computation, their embeddings will be different

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 43

𝑣!

Neural Net A

𝑣"

Neural Net A Neural Net B

¡ Why does ID-GNN work better than GNN?
¡ Intuition: ID-GNN can count cycles originating from

a given node, but GNN cannot

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

!! !"A B

GNN computational graph

=

…

!!

…

!"

!! !"A B

ID-GNN rooted subtrees

≠

…

!!

…

!"A B A B

Goal: classify !! and !"

𝑣!: length-3 cycles = 2 𝑣": length-3 cycles = 0
From the node coloring, we can tell that:

¡ Based on the intuition, we propose a simplified version
ID-GNN-Fast
§ Include identity information as an augmented node feature

(no need to do heterogenous message passing)
§ Use cycle counts in each layer as an augmented node

feature. Also can be used together with any GNN
11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

!! !"A B

GNN computational graph

=

…

!!

…

!"

!! !"A B

ID-GNN rooted subtrees

≠

…

!!

…

!"A B A B

Goal: classify !! and !"

length-3 cycles = 2 length-3 cycles = 0

1

0

2

2

𝑣!

1

0

2

0

𝑣"

Cycle count
at each level

¡ Summary of ID-GNN: A general and powerful
extension to GNN framework
§ We can apply ID-GNN on any message passing

GNNs (GCN, GraphSAGE, GIN, …)
§ ID-GNN provides consistent performance gain in

node/edge/graph level tasks

§ ID-GNN is more expressive than their GNN
counterparts. ID-GNN is the first message passing
GNN that is more expressive than 1-WL test

§ We can easily implement ID-GNN using popular
GNN tools (PyG, DGL, …)

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 46

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Recent years have seen impressive
performance of deep learning models in a
variety of applications.
§ Ex) In computer vision, deep convolutional

networks have achieved human-level performance
on ImageNet (image category classification)

¡ Are these models ready to be deployed in
real world?

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 48

¡ Deep convolutional neural networks are
vulnerable to adversarial attacks:
§ Imperceptible noise changes the prediction.

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Adopted from
Goodfellow et al.
ICLR 2015

Carefully-
calculated noise

Adversarial
example

¡ Adversarial examples are also reported in natural
language processing [Jia & Liang et al. EMNLP 2017] and audio
processing [Carlini et al. 2018] domains.

¡ The existence of adversarial examples
prevents the reliable deployment of deep
learning models to the real world.
§ Adversaries may try to actively hack the deep

learning models.
§ The model performance can become much worse

than we expect.
¡ Deep learning models are often not robust.
§ In fact, it is an active area of research to make

these models robust against adversarial examples

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 50

51

¡ This lecture: How about GNNs? Are they
robust to adversarial examples?

¡ Premise: Common applications of GNNs
involve public platforms and monetary
interests.
§ Recommender systems
§ Social networks
§ Search engines

¡ Adversaries have the incentive to manipulate
input graphs and hack GNNs’ predictions.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Zügner et al. Adversarial Attacks on Neural Networks for Graph Data, KDD 2018

https://arxiv.org/pdf/1805.07984.pdf

¡ To study the robustness of GNNs, we
specifically consider the following setting:
§ Task: Semi-supervised node classification
§ Model: GCN [Kipf & Welling ICLR 2017]

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 52

?
?

?

?

?

?
?

?: Unlabeled
Predict labels of
unlabeled nodes

¡ We first describe several real-world
adversarial aPack possibiliQes.

¡ We then review the GCN model that we are
going to aQack (knowing the opponent).

¡ We mathemaRcally formalize the aPack
problem as an opQmizaQon problem.

¡ We empirically see how vulnerable GCN’s
predicQon is to the adversarial aPack.

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 53

¡ What are the attack possibilities in real world?
§ Target node 𝑡 ∈ 𝑉: node whose label prediction

we want to change
§ Attacker nodes 𝑆 ⊂ 𝑉: nodes the attacker can

modify

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 54

Attacker node

Target node

Attacker node

¡ Direct Attack: Attacker node is the target
node: 𝑺 = 𝒕

¡ Modify target node feature
§ Ex) Change website content

¡ Add connections to target
§ Ex) Buy likes/followers

¡ Remove connections from target
§ Ex) Unfollow users

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 55

¡ Indirect Attack: The target node is not in the
attacker nodes: 𝒕 ∉ 𝑺

¡ Modify attacker node features
§ Ex) Hijack friends of targets

¡ Add connections to attackers
§ Ex) Create a link, link farm

¡ Remove connections from attackers
§ Ex) Delete undesirable link

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 56

¡ Objective for the attacker:
Maximize (change of target node label prediction)
Subject to (graph manipulation is small)

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 57

1
1
1

0
1
1

1
0
1

0
0
0

1
1
0?

Graph

GCN1

0

Class 1 Class 2 Class 3

Target node

Perform small graph
manipulation

Learn GCN
model

Change in predicted
class label

If graph manipulation is too large, it will easily be detected.
Successful attacks should change the target prediction
with “unnoticeably-small” graph manipulation.

¡ Original graph:
§ 𝑨: adjacency matrix, 𝑿: feature matrix

¡ Manipulated graph (aXer adding noise):
§ 𝑨=: adjacency matrix, 𝑿=: feature matrix

¡ AssumpQon: 𝑨=, 𝑿= ≈ (𝑨, 𝑿)
§ Graph manipula;on is unno7ceably small.

§ Preserving basic graph staRsRcs (e.g,. degree
distribuRon) and feature staRsRcs.

§ Graph manipula;on is either direct (changing the
feature/connec;on of target nodes) or indirect.

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 58

¡ Overview of the attack framework
§ Original adjacency matrix 𝑨, node features 𝑿,

node labels 𝒀.
§ 𝜽∗ : Model parameter learned over 𝑨,𝑿, 𝒀.

§ 𝑐(∗: class label of node 𝑣 predicted by GCN with 𝜽∗

§ An attacker has access to 𝑨,𝑿, 𝒀, and the learning
algorithm.

§ The attacker modifies (𝑨, 𝑿) into 𝑨=, 𝑿= .
§ 𝜽∗=: Model parameter learned over 𝑨=, 𝑿=, 𝒀.

§ 𝑐(∗9: class label of node 𝑣 predicted by GCN with 𝜽∗9

§ The goal of the attacker is to make 𝑐(∗= ≠ 𝑐(∗.
11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 59

¡ Target node: 𝑣 ∈ 𝑉
¡ GCN learned over the original graph

𝜽∗ = argmin𝜽ℒ()*+, 𝜽; 𝑨, 𝑿

¡ GCN’s original prediction on the target node:
𝑐(∗ = 𝐚𝐫𝐠𝐦𝐚𝐱?𝑓𝜽∗ 𝑨,𝑿 (,?

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 60

Predict the class 𝑐*∗ of vertex 𝒗 that has
the highest predicted probability

¡ GCN learned over the manipulated graph
𝜽∗- = argmin𝜽ℒ()*+, 𝜽; 𝑨′, 𝑿′

¡ GCN’s predicRon on the target node 𝒗:
𝑐(∗= = argmax?𝑓𝜽∗" 𝑨′, 𝑿′ (,?

¡ We want the predicQon to change aXer the
graph is manipulated:

𝑐"∗- ≠ 𝑐"∗

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 61

¡ Change of prediction on target node 𝑣:
𝚫 𝑣; 𝑨-, 𝑿- =
log 𝑓𝜽∗" 𝑨′, 𝑿′ ",/#∗" − log 𝑓𝜽∗" 𝑨′, 𝑿′ ",/#∗

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 62

Predicted (log)
probability of the
newly-predicted
class 𝑐(∗9

Predicted (log)
probability of the
originally-predicted
class 𝑐(∗

Want to increase
this term

Want to decrease
this term

¡ Final opQmizaQon objecQve:
argmax𝑨",𝑿"𝚫(𝑣; 𝑨′, 𝑿′)
subject to 𝑨-, 𝑿- ≈ (𝑨, 𝑿)

¡ Challenges in opQmizing the objecQve
§ Adjacency matrix 𝑨9 is a discrete object: gradient-based

opRmizaRon cannot be used.
§ For every modified graph 𝑨9 and 𝑿9, GCN needs to be re-

trained (this is computaRonally expensive):
§ 𝜽∗9 = argmin𝜽ℒ<=>?@ 𝜽; 𝑨′, 𝑿′

¡ Several approximaRons are proposed to make the opRmizaRon
tractable [Zügner et al. KDD2018].

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 63

¡ Setting: Semi-supervised node classification
with GCN

¡ Graph: Paper citation network (2,800 nodes,
8,000 edges).

¡ Attack type: Edge modification (addition or
deletion of edges)

¡ Attack budget on node v: 𝑑" + 2
modifications (𝑑": degree of node 𝑣).
§ Intuition: It is harder to attack a node with a

larger degree.
¡ Model is trained and attacked 5 times using

different random seeds.
11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 64

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 65

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(correct)

Class 7

Classification margin
> 0: Correct classification
< 0: Incorrect classification

Predicted probabilities of a target node 𝑣 over 5 re-
trainings (each bar represents a single trial)
(without graph manipulation, i.e., clean graph)

GCN is able to correctly
classify the target node
with high confidence.

7-class classification

GCN’s prediction after modifying 5 edges attached to
the target node (direct adversarial attack).

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 66

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(correct)

Class 7

Predicted probabilities over 5 re-trainings
(with adversarial attacks)

The model confidently makes
the wrong prediction

¡ Adversarial direct attack
is the strongest attack,
significantly worsening
GCN’s performance
(compared to no attack).

¡ Random attack is much
weaker than adversarial
attack.

¡ Indirect attack is more
challenging than direct
attack.

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 67

C
la

ss
ifi

ca
tio

n
m

ar
gi

n

Each dot indicates one attack trial.

Direct attack
No
attack

Indirect
attack

Adversarial
indirect
attack

Adversarial
direct attack

Randomly
add edges
between
target nodes
and nodes
with different
labels.

Clean
Mis-
classification

Adopted from
Zügner et al.
KDD 2018

¡ We study the adversarial robustness of GCN
applied to semi-supervised node classification.

¡ We consider different attack possibilities on
graph-structured data.

¡ We mathematically formulate the adversarial
attack as an optimization problem.

¡ We empirically demonstrate that GCN’s prediction
performance can be significantly harmed by
adversarial attacks.

¡ GCN is not robust to adversarial attacks but it is
somewhat robust to indirect attacks and random
noise.

11/16/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 68

