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…

Output: Node embeddings. 
Also, we can embed subgraphs, 
graphs



Idea: Node’s neighborhood defines a 
computation graph
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Determine node 
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the 
graph to compute node features



¡ Intuition: Nodes aggregate information from 
their neighbors using neural networks
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Neural networks



¡ Intuition: Network neighborhood defines a 
computation graph
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Every node defines a computation 
graph based on its neighborhood!
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(2) Aggregation

(1) Message
GNN Layer 1

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

https://arxiv.org/pdf/2011.08843.pdf
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GNN Layer 1

GNN Layer 2

(3) Layer 
connectivity

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Connect GNN layers into a GNN
• Stack layers sequentially
• Ways of adding skip connections

https://arxiv.org/pdf/2011.08843.pdf
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(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation

https://arxiv.org/pdf/2011.08843.pdf
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN
• Supervised/Unsupervised 

objectives
• Node/Edge/Graph level 

objectives

https://arxiv.org/pdf/2011.08843.pdf
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


¡ Idea of a GNN Layer:
§ Compress a set of vectors into a single vector
§ Two step process:

§ (1) Message
§ (2) Aggregation
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Input node embedding 𝐡!
"#$ , 𝐡%∈'(!)

"#$

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡!
"

(2) Aggregation

(1) Message

Node 𝒗



¡ (1) Message computation
§ Message function: 

§ Intuition: Each node will create a message, which will be 
sent to other nodes later

§ Example: A Linear layer 𝐦#
(%) = 𝐖 % 𝐡#

%'(

§ Multiply node features with weight matrix 𝐖 !
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(2) Aggregation

(1) Message

Node 𝒗

𝐦"
($) = MSG $ 𝐡"

$&'
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¡ (2) Aggregation
§ Intuition: Each node will aggregate the messages from 

node 𝑣’s neighbors

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§𝐡)
% = Sum({𝐦#

% , 𝑢 ∈ 𝑁(𝑣)})

𝐡!
(#) = AGG # 𝐦"

$ , 𝑢 ∈ 𝑁 𝑣
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(2) Aggregation

(1) Message

Node 𝒗
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𝐡)
% = CONCAT AGG 𝐦#

% , 𝑢 ∈ 𝑁 𝑣 ,𝐦)
%

¡ Issue: Information from node 𝑣 itself could get lost
§ Computation of 𝐡)

(%) does not directly depend on 𝐡)
(%'()

¡ Solution: Include 𝐡(
($&') when computing 𝐡(

($)

§ (1) Message: compute message from node 𝒗 itself
§ Usually, a different message computation will be performed

§ (2) Aggregation: After aggregating from neighbors, we can 
aggregate the message from node 𝒗 itself
§ Via concatenation or summation
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𝐦"
(!) = 𝐁 ! 𝐡"

!%&𝐦'
(!) = 𝐖 ! 𝐡'

!%&

First aggregate from neighbors

Then aggregate from node itself



(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation
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𝐦"
($) = MSG $ 𝐡"

$&' , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡!
(#) = AGG # 𝐦%

# , 𝑢 ∈ 𝑁 𝑣 ,𝐦!
#



¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?
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𝐡)
(%) = 𝜎 𝐖 % G

#∈+ )

𝐡#
%'(

𝑁 𝑣

𝐡)
(%) = 𝜎 G

#∈+ )

𝐖 % 𝐡#
%'(

𝑁 𝑣

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf


¡ (1) Graph Convolutional Networks (GCN)

¡ Message: 

§ Each Neighbor: 𝐦#
(%) = (

+ )
𝐖 % 𝐡#

%'(

¡ Aggregation:
§ Sum over messages from neighbors, then apply activation

§ 𝐡)
% = 𝜎 Sum 𝐦#

% , 𝑢 ∈ 𝑁 𝑣
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Normalized by node degree
(In the GCN paper they use a slightly 
different normalization)

𝐡)
(%) = 𝜎 G

#∈+ )

𝐖 % 𝐡#
%'(

𝑁 𝑣
(2) Aggregation

(1) Message



¡ (2) GraphSAGE

¡ How to write this as Message + Aggregation?
§ Message is computed within the AGG ⋅
§ Two-stage aggregation

§ Stage 1: Aggregate from node neighbors

§ Stage 2: Further aggregate over the node itself
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𝐡)
(%) = 𝜎 𝐖(%) H CONCAT 𝐡)

%'( , AGG 𝐡#
%'( , ∀𝑢 ∈ 𝑁 𝑣

𝐡((")
(!) ← AGG 𝐡'

(!%&), ∀𝑢 ∈ 𝑁 𝑣

𝐡"
(!) ← 𝜎 𝐖(!) ⋅ CONCAT(𝐡"

!%& , 𝐡((")
(!) )

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply 
symmetric vector function Mean(⋅) or Max(⋅)

¡ LSTM: Apply LSTM to reshuffled of neighbors

AGG = 7
"∈<(()

𝐡"
($&')

𝑁(𝑣)
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AGG = Mean({MLP(𝐡"
($&')), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡"
($&'), ∀𝑢 ∈ 𝜋 𝑁 𝑣 ])

Message computation

Message computation

Aggregation

Aggregation

Aggregation



¡ ℓ! Normalization: 
§ Optional: Apply ℓ, normalization to 𝐡)

(%) at every layer

§ 𝐡!
(#) ← 𝐡#

(%)

𝐡#
(%)

'

∀𝑣 ∈ 𝑉 where 𝑢 ' = ∑( 𝑢(' (ℓ'-norm)

§ Without ℓ' normalization, the embedding vectors have 
different scales (ℓ'-norm) for vectors

§ In some cases (not always), normalization of embedding 
results in performance improvement 

§ After ℓ' normalization, all vectors will have the same 
ℓ'-norm
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¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE

§ 𝛼(" =
'

< (
is the weighting factor (importance)

of node 𝑢’s message to node 𝑣
§ ⟹ 𝛼(" is defined explicitly based on the 

structural properties of the graph (node degree)
§ ⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important 

to node 𝑣

𝐡(
($) = 𝜎(∑"∈< ( 𝛼("𝐖($)𝐡"

($&'))
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Attention weights



¡ (3) Graph Attention Networks

Not all node’s neighbors are equally important
§ Attention is inspired by cognitive attention. 
§ The attention 𝜶𝒗𝒖 focuses on the important parts of 

the input data and fades out the rest. 
§ Idea: the NN should devote more computing power on that 

small but important part of the data. 
§ Which part of the data is more important depends on the 

context and is learned through training.

𝐡(
($) = 𝜎(∑"∈< ( 𝛼("𝐖($)𝐡"

($&'))
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Attention weights



Can we do better than simple 
neighborhood aggregation?

Can we let weighting factors 𝜶𝒗𝒖 to be 
learned?

¡ Goal: Specify arbitrary importance to different 
neighbors of each node in the graph

¡ Idea: Compute embedding 𝒉#
(%) of each node in the 

graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different nodes 

in a neighborhood
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[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]



¡ Let 𝛼"# be computed as a byproduct of an 
attention mechanism 𝒂:
§ (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across 

pairs of nodes 𝑢, 𝑣 based on their messages:
𝑒(" = 𝑎(𝐖($)𝐡"

($&'),𝐖($)𝒉(
($&'))

§ 𝒆𝒗𝒖 indicates the importance of 𝒖/𝐬message to node 𝒗
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𝐡*
("#$)

𝐡+
("#$)

𝑒*+

𝑒12 = 𝑎(𝐖(%)𝐡1
(%'(),𝐖(%)𝐡2

(%'())



§ Normalize 𝑒(" into the final attention weight 𝜶𝒗𝒖
§ Use the softmax function, so that ∑#∈+ ) 𝛼)# = 1:

𝛼!% =
exp(𝑒!%)

∑)∈+ ! exp(𝑒!))

§ Weighted sum based on the final attention weight 
𝜶𝒗𝒖

𝐡!
(#) = 𝜎(∑%∈+ ! 𝛼!%𝐖(%)𝐡%

(#,-))
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𝛼*+
Weighted sum using 𝛼12, 𝛼14, 𝛼15:
𝐡)
(!) = 𝜎(𝛼)*𝐖(!)𝐡*

(!%&)+𝛼)+𝐖(!)𝐡+
(!%&)+ 

𝛼),𝐖(!)𝐡,
(!%&))

𝐡+
("#$)

𝐡,
("#$)

𝛼*,

𝛼*-



¡ What is the form of attention mechanism 𝒂?
§ The approach is agnostic to the choice of 𝑎

§ E.g., use a simple single-layer neural network
§ 𝑎 have trainable parameters (weights in the Linear layer)

§ Parameters of 𝑎 are trained jointly:
§ Learn the parameters together with weight matrices (i.e., 

other parameter of the neural net 𝐖(%)) in an end-to-end 
fashion
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𝑒)* = 𝑎 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)

= Linear Concat 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)
𝐡*
("#$) 𝐡+

("#$)

Concatenate Linear
𝑒)*



¡ Multi-head attention: Stabilizes the learning 
process of attention mechanism
§ Create multiple attention scores (each replica 

with a different set of parameters):

§ Outputs are aggregated:
§ By concatenation or summation

§ 𝐡)
(%) = AGG(𝐡)

(%) 1 , 𝐡)
(%) 2 , 𝐡)

(%) 3 )
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𝐡!
(#)[1] = 𝜎(∑%∈+ ! 𝛼!%- 𝐖(#)𝐡%

(#,-))

𝐡!
(#)[2] = 𝜎(∑%∈+ ! 𝛼!%' 𝐖(#)𝐡%

(#,-))

𝐡!
(#)[3] = 𝜎(∑%∈+ ! 𝛼!%. 𝐖(#)𝐡%

(#,-))



¡ Key benefit: Allows for (implicitly) specifying different 
importance values (𝜶𝒗𝒖) to different neighbors

¡ Computationally efficient: 
§ Computation of attentional coefficients can be parallelized 

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient: 
§ Sparse matrix operations do not require more than
𝑂(𝑉 + 𝐸) entries to be stored

§ Fixed number of parameters, irrespective of graph size
¡ Localized:

§ Only attends over local network neighborhoods
¡ Inductive capability: 

§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure
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¡ t-SNE plot of GAT-based node embeddings:
§ Node color: 7 publication classes
§ Edge thickness: Normalized attention coefficients between 

nodes 𝑖 and 𝑗, across eight attention heads, ∑6(𝛼786 + 𝛼876)
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Attention mechanism can be used 
with many different graph neural 
network models

In many cases, attention leads to 
performance gains



¡ In practice, these classic GNN 
layers are a great starting point
§ We can often get better 

performance by considering a 
general GNN layer design 

§ Concretely, we can include 
modern deep learning modules 
that proved to be useful in many 
domains
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf


¡ Many modern deep learning modules can be 
incorporated into a GNN layer
§ Batch Normalization:

§ Stabilize neural network training

§ Dropout:
§ Prevent overfitting

§ Attention/Gating:
§ Control the importance of a message

§ More:
§ Any other useful deep learning modules
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf


¡ Goal: Stabilize neural networks training
¡ Idea: Given a batch of inputs (node embeddings)

§ Re-center the node embeddings into zero mean 
§ Re-scale the variance into unit variance
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𝛍. =
1
𝑁=

/0$

'

𝐗/,.Input: 𝐗 ∈ ℝ+×5
𝑁 node embeddings

Trainable Parameters: 
𝛄, 𝛃 ∈ ℝ5

Output: 𝐘 ∈ ℝ+×5
Normalized node embeddings

𝛔.2 =
1
𝑁=

/0$

'

𝐗/,. − 𝛍.
2

B𝐗/,. =
𝐗/,. − 𝛍.

𝛔.2 + 𝜖

𝐘/,. = 𝛄.B𝐗/,. + 𝛃.

Step 1: 
Compute the
mean and variance 
over 𝑵 embeddings

Step 2:
Normalize the feature 
using computed mean 
and variance

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf


¡ Goal: Regularize a neural net to prevent overfitting.
¡ Idea: 

§ During training: with some probability 𝑝, randomly set 
neurons to zero (turn off)

§ During testing: Use all the neurons for computation
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Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com


¡ In GNN, Dropout is applied to the 
linear layer in the message function
§ A simple message function with linear 

layer: 𝐦"
($) = 𝐖 $ 𝐡"

$&'
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Dropout
𝐡#
%'( 𝐦#

(%)

𝐖 %

Visualization of a linear layer

(2) Aggregation

(1) Message



Apply activation to 𝒊-th dimension of 
embedding 𝐱
¡ Rectified linear unit (ReLU)

ReLU 𝐱7 = max(𝐱7, 0)
§ Most commonly used

¡ Sigmoid

𝜎 𝐱7 =
1

1 + 𝑒'𝐱!
§ Used only when you want to restrict the 

range of your embeddings
¡ Parametric ReLU
PReLU 𝐱7 = max 𝐱7, 0 + 𝑎7min(𝐱7, 0)

𝑎7 is a trainable parameter
§ Empirically performs better than ReLU
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𝑥

𝑦

0
𝑥

𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒!"



¡ Summary: Modern deep learning 
modules can be included into a GNN 
layer for better performance

¡ Designing novel GNN layers is still 
an active research frontier!

¡ Suggested resources: You can 
explore diverse GNN designs or try 
out your own ideas in GraphGym
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A GNN Layer

https://github.com/snap-stanford/GraphGym
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GNN Layer 1

GNN Layer 2

(3) Layer 
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


¡ How to construct a Graph Neural Network?
§ The standard way: Stack GNN layers sequentially
§ Input: Initial raw node feature 𝐱(
§ Output: Node embeddings  𝐡(

(M) after 𝐿 GNN layers
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𝐡"
(-) = 𝐱"

𝐡"
(&)

𝐡"
(.)

𝐡"
(/)



¡ The Issue of stacking many GNN layers
§ GNN suffers from the over-smoothing problem

¡ The over-smoothing problem: all the node 
embeddings converge to the same value
§ This is bad because we want to use node 

embeddings to differentiate nodes
¡ Why does the over-smoothing problem 

happen?
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¡ Receptive field: the set of nodes that determine 
the embedding of a node of interest
§ In a 𝑲-layer GNN, each node has a receptive field of 
𝑲-hop neighborhood
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Receptive field for 
1-layer GNN

Receptive field for 
2-layer GNN

Receptive field for 
3-layer GNN



¡ Receptive field overlap for two nodes
§ The shared neighbors quickly grows when we 

increase the number of hops (num of GNN layers)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!



¡ We can explain over-smoothing via the notion 
of receptive field
§ We knew the embedding of a node is determined 

by its receptive field
§ If two nodes have highly-overlapped receptive fields, then 

their embeddings are highly similar

§ Stack many GNN layers à nodes will have highly-
overlapped receptive fields à node embeddings 
will be highly similar à suffer from the over-
smoothing problem

¡ Next: how do we overcome over-smoothing problem?
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¡ What do we learn from the over-smoothing problem? 
¡ Lesson 1: Be cautious when adding GNN layers

§ Unlike neural networks in other domains (CNN for image 
classification), adding more GNN layers do not always help

§ Step 1: Analyze the necessary receptive field to solve your 
problem. E.g., by computing the diameter of the graph

§ Step 2: Set number of GNN layers 𝐿 to be a bit more than the 
receptive field we like. Do not set 𝑳 to be unnecessarily 
large!

¡ Question: How to enhance the expressive power of a 
GNN, if the number of GNN layers is small?
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¡ How to make a shallow GNN more expressive?
¡ Solution 1: Increase the expressive power within 

each GNN layer
§ In our previous examples, each transformation or 

aggregation function only include one linear layer
§ We can make aggregation / transformation become a 

deep neural network!
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(2) Aggregation

(1) Transformation

If needed, each box could 
include a 3-layer MLP



¡ How to make a shallow GNN more expressive?
¡ Solution 2: Add layers that do not pass messages

§ A GNN does not necessarily only contain GNN layers
§ E.g., we can add MLP layers (applied to each node) before and after 

GNN layers, as pre-process layers and post-process layers
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Pre-processing layers: Important when 
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when 
reasoning / transformation over node 
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!



¡ What if my problem still requires many GNN layers?
¡ Lesson 2: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in 
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the 
final node embeddings, by adding shortcuts in GNN
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Idea of skip connections:
Before adding shortcuts: 

𝑭 𝐱
After adding shortcuts: 

𝑭 𝐱 + 𝐱

Duplicate 
into two 
branches

Sum two 
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf


¡ Why do skip connections work?
§ Intuition: Skip connections create a mixture of models
§ 𝑁 skip connections à 2+ possible paths
§ Each path could have up to 𝑁 modules
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Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

§ We automatically get a mixture 
of shallow GNNs and deep GNNs

https://arxiv.org/abs/1605.06431


¡ A standard GCN layer 

¡ 𝐡)
(%) = 𝜎 ∑#∈+ ) 𝐖 % 𝐡*

+,-

+ )

¡ A GCN layer with skip connection

¡ 𝐡)
(%) = 𝜎 ∑#∈+ ) 𝐖 % 𝐡*

+,-

+ )
+ 𝐡)

(%'()
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This is our 𝑭 𝐱

𝑭(𝐱) + 𝐱



¡ Other options: Directly 
skip to the last layer
§ The final layer directly 

aggregates from the all the 
node embeddings in the 
previous layers
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Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018
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https://arxiv.org/abs/1806.03536
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(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

https://arxiv.org/pdf/2011.08843.pdf


Our assumption so far has been 
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Feature level: 

§ The input graph lacks features à feature augmentation
§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational 

graph into a GPU
§ It’s just unlikely that the input graph happens to be 

the optimal computation graph for embeddings
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¡ Graph Feature manipulation
§ The input graph lacks features à feature 

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when 

doing message passing
§ The graph is too large à Sample subgraphs to 

compute embeddings 
§ Will cover later in lecture: Scaling up GNNs
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Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes
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Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors
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1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5



¡ Feature augmentation: constant vs. one-hot
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Constant node feature One-hot node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a unique ID, 
so node-specific information can 
be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

Low. Cannot generalize to new 
nodes: new nodes introduce new 
IDs, GNN doesn’t know how to 
embed unseen IDs

Computational 
cost

Low. Only 1 dimensional feature High. 𝑂 𝑉 dimensional feature, 
cannot apply to large graphs

Use cases Any graph, inductive settings 
(generalize to new nodes)

Small graph, transductive settings 
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1



Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Example: Cycle count feature
§ Can GNN learn the length of a cycle that 𝑣' resides in?
§ Unfortunately, no
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𝑣# 𝑣#

𝑣$ resides in a cycle with length 3 𝑣$ resides in a cycle with length 4



¡ 𝒗𝟏 cannot differentiate which graph it resides in 
§ Because all the nodes in the graph have degree of 2
§ The computational graphs will be the same binary tree
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𝑣# 𝑣%

𝑣$ resides in a cycle 
with length 3

𝑣$ resides in a cycle 
with length 4

𝑣#

𝑣$ resides in a cycle with infinite length

… …

…

!!

The computational 
graphs for node 𝒗𝟏
are always the same



Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Solution: 
§ We can use cycle count as augmented node features
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𝑣# 𝑣#

𝑣$ resides in a cycle with length 3 𝑣$ resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start 
from cycle 
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏



Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced in 
Lecture 2 can be used!
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¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via 

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN 

computation, use 𝐴 + 𝐴Q
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A

B

C

D

E

Authors Papers

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author 

collaboration graph



¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the 

nodes in the graph
§ Suppose in a sparse graph, two nodes have 

shortest path distance of 10
§ After adding the virtual node, all the nodes 

will have a distance of 2 
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message 
passing in sparse graphs
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The virtual 
node



¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s 
neighborhood for message passing
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Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


¡ For example, we can randomly choose 2 
neighbors to pass messages
§ Only nodes 𝐵 and 𝐷 will pass message to 𝐴
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¡ Next time when we compute the embeddings, 
we can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass message to 𝐴
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¡ In expectation, we can get embeddings similar 
to the case where all the neighbors are used
§ Benefits: greatly reduce computational cost
§ And in practice it works great!
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Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA


¡ Recap: A general perspective for GNNs
§ GNN Layer: 

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity: 
§ Deciding number of layers
§ Skip connections

§ Graph Manipulation:
§ Feature augmentation
§ Structure manipulation

¡ Next: GNN objectives, GNN in practice
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