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¡ Intuition: Map nodes to 𝑑-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together 
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f (    )=
Input graph 2D node embeddings

How to learn mapping function 𝒇?
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Goal:

Need to define!

Input network d-dimensional 
embedding space

similarity 𝑢, 𝑣 ≈ 𝐳!"𝐳#



¡ Encoder: maps each node to a low-dimensional 
vector

¡ Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network
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Similarity of 𝑢 and 𝑣 in 
the original network

dot product between node 
embeddings

2/22/21

Decoder

ENC 𝑣 = 𝐳!

similarity 𝑢, 𝑣 ≈ 𝐳!"𝐳#

node in the input graph

d-dimensional 
embedding



Simplest encoding approach: encoder is just an 
embedding-lookup
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Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node

2/22/21

𝐙 =



¡ Limitations of shallow embedding methods:
§ 𝑶(|𝑽|) parameters are needed: 

§ No sharing of parameters between nodes
§ Every node has its own unique embedding  

§ Inherently “transductive”: 
§ Cannot generate embeddings for nodes that are not seen 

during training

§ Do not incorporate node features:
§ Many graphs have features that we can and should 

leverage
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¡ Today: We will now discuss deep methods 
based on graph neural networks (GNNs):

¡ Note: All these deep encoders can be 
combined with node similarity functions 
defined in the lecture 3

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

multiple layers of 
non-linear transformations 
based on graph structure

ENC 𝑣 =
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…

Output: Node embeddings. 
Also, we can embed subgraphs, 
graphs



Tasks we will be able to solve:
¡ Node classification
§ Predict a type of a given node

¡ Link prediction
§ Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Network similarity
§ How similar are two (sub)networks
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids



But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e., 

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

11

vs.

Networks Images

Text
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1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks and 
GraphSAGE
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¡ Supervised learning: we are given input 𝒙, 
and the goal is to predict label 𝒚

¡ Input 𝒙 can be:
§ Vectors of real numbers
§ Sequences (natural language)
§ Matrices (images)
§ Graphs (potentially with node and edge features)

¡ We formulate the task as an optimization 
problem
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¡ Formulate the task as an optimization problem:
min
!
ℒ(𝒚, 𝑓 𝒙 )

¡ Θ: a set of parameters we optimize
§ Could contain one or more scalars, vectors, matrices …
§ E.g. Θ = {𝑍} in the shallow encoder (the embedding lookup)

¡ ℒ: loss function. Example: L2 loss
ℒ 𝒚, 𝑓 𝒙 = 𝑦 − 𝑓 𝑥 '

§ Other common loss functions:
§ L1 loss, huber loss, max margin (hinge loss), cross entropy … 
§ See https://pytorch.org/docs/stable/nn.html#loss-functions
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Objective function

https://pytorch.org/docs/stable/nn.html


¡ One common loss for classification: cross entropy (CE) 
¡ Label 𝒚 is a categorical vector (one-hot encoding)

§ e.g. 𝒚 =
¡ 𝑓 𝒙 = Softmax 𝑔 𝒙

§ Recall from lecture 3: 𝑓 𝒙 ! =
"!(#)%

∑&'(
) "!(#)&

,

where 𝐶 is the number of  classes.
§ e.g. 𝑓 𝒙 =

¡ CE 𝒚, 𝑓 𝒙 = −∑!"#$ (𝑦! log 𝑓(𝑥)!)
§ 𝑦!, 𝑓(𝑥)! are the actual and predicted value of the 𝑖-th class.
§ Intuition: the lower the loss, the closer the prediction is to one-hot 

¡ Total loss over all training examples: 
§ ℒ = ∑ 𝒙,𝒚 ∈𝒯 CE 𝒚, 𝑓 𝒙
§ 𝒯: training set containing all pairs of data and labels 𝒙, 𝒚
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0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

𝑦 is of class “3”

𝑔 𝑥 ! denotes 𝑖-th
coordinate of the vector 
output of func. 𝑔 𝑥



¡ How to optimize the objective function?
¡ Gradient vector: Direction and rate of fastest 

increase

∇!ℒ = (
𝜕ℒ
𝜕Θ0

,
𝜕ℒ
𝜕Θ'

, … )

§ Θ#, Θ%… : components of Θ
¡ Recall directional derivative

of a multi-variable function (e.g. ℒ) along a given 
vector represents the instantaneous rate of 
change of the function along the vector.

¡ Gradient is the directional derivative in the 
direction of largest increase
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https://en.wikipedia.org/wiki/Gradient

Partial derivative

https://en.wikipedia.org/wiki/Gradient


¡ Iterative algorithm: repeatedly update weights in the 
(opposite) direction of gradients until convergence

¡ Training: Optimize Θ iteratively
§ Iteration: 1 step of gradient descent

¡ Learning rate (LR) 𝜼:
§ Hyperparameter that controls the size of gradient step
§ Can vary over the course of training (LR scheduling)

¡ Ideal termination condition: 0 gradient
§ In practice, we stop training if it no longer improves 

performance on validation set (part of dataset we hold out 
from training)
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Θ ← Θ − 𝜂∇-ℒ



¡ Problem with gradient descent: 
§ Exact gradient requires computing ∇-ℒ(𝒚, 𝑓 𝒙 ), 

where 𝒙 is the entire dataset!
§ This means summing gradient contributions over all the 

points in the dataset
§ Modern datasets often contain billions of data points
§ Extremely expensive for every gradient descent step

¡ Solution: Stochastic gradient descent (SGD)
§ At every step, pick a different minibatch 𝓑 containing 

a subset of the dataset, use it as input 𝒙

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19



¡ Concepts:
§ Batch size: the number of data points in a minibatch

§ E.g. number of nodes for node classification task
§ Iteration: 1 step of SGD on a minibatch
§ Epoch: one full pass over the dataset (# iterations is 

equal to ratio of dataset size and batch size)

¡ SGD is unbiased estimator of full gradient:
§ But there is no guarantee on the rate of convergence
§ In practice often requires tuning of learning rate

¡ Common optimizer that improves over SGD:
§ Adam, Adagrad, Adadelta, RMSprop …
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¡ Objective: min
$
ℒ(𝒚, 𝑓 𝒙 )

¡ In deep learning, the function 𝑓 can be very 
complex

¡ To start simple, consider linear function
𝑓 𝒙 = 𝑊 ⋅ 𝒙, Θ = {W}

¡ If 𝑓 returns a scalar, then 𝑊 is a learnable vector

∇%𝑓 = (
𝜕𝑓
𝜕𝑤&

,
𝜕𝑓
𝜕𝑤'

,
𝜕𝑓
𝜕𝑤(

…)

¡ If 𝑓 returns a vector, then 𝑊 is the weight matrix
∇%𝑓 = 𝑊)
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Jacobian matrix of 𝑓



¡ How about a more complex function:
𝑓 𝒙 = 𝑊𝟐 𝑊&𝒙 , Θ = {W&,W'}

¡ Recall chain rule:

¡ E.g. ∇𝒙𝑓 =
,-

,(%&𝒙)
B ,(%&𝒙)

,𝒙

¡ Back-propagation: Use of chain rule to 
propagate gradients of intermediate steps, and 
finally obtain gradient of ℒ w.r.t. Θ
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01
02
= 01
03
B 03
02

In other words:
𝑓 𝒙 = 𝑊𝟐 𝑊.𝒙
ℎ(𝑥) = 𝑊.𝒙
g 𝑧 = 𝑊/𝑧



¡ Example: Simple 2-layer linear network
¡ 𝑓 𝒙 = 𝑔 ℎ 𝑥 = 𝑊𝟐 𝑊&𝒙

¡ ℒ = ∑ 𝒙,𝒚 ∈𝓑 𝒚,−𝑓 𝒙
𝟐

sums the L2 loss in 

a minibatch 𝓑
¡ Hidden layer: intermediate representation for 

input 𝒙
§ Here we use ℎ(𝑥) = 𝑊.𝒙 to denote the hidden layer
§ 𝑓 𝒙 = 𝑊/ℎ(𝑥)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

𝑥!

𝑥"

𝑊𝟐
𝑊𝟏

𝑓(𝒙)



¡ Note that in 𝑓 𝒙 = 𝑊𝟐 𝑊&𝒙 , 𝑊𝟐𝑊& is 
another matrix (vector, if we do binary classification)

¡ Hence 𝑓 𝒙 is still linear w.r.t. 𝒙 no matter 
how many weight matrices we compose

¡ Introduce non-linearity:
§ Rectified linear unit (ReLU)
𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)

§ Sigmoid
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𝑥

𝑦

0

𝑥

𝑦

0

1𝜎 𝑥 =
1

1 + 𝑒01



¡ Each layer of MLP combines linear transformation and 
non-linearity:

§ where 𝑊$ is weight matrix that transforms hidden representation at
layer 𝑙 to layer 𝑙 + 1

§ 𝑏$ is bias at layer 𝑙, and is added to the linear transformation of 𝒙
§ 𝜎 is non-linearity function (e.g., sigmod)

¡ Suppose 𝒙 is 2-dimensional, with entries 𝑥# and 𝑥%
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𝒙(89.) = 𝜎(𝑊8𝒙 8 + 𝑏8)

𝑥!

𝑥"
1-dimensional 
output

Every layer:
Linear transformation + 
non-linearity

3-dimensional hidden
representation



¡ Objective function:
min
$
ℒ(𝒚, 𝑓 𝒙 )

¡ 𝑓 can be a simple linear layer, an MLP, or 
other neural networks (e.g., a GNN later)

¡ Sample a minibatch of input 𝒙
¡ Forward propagation: compute ℒ given 𝒙
¡ Back-propagation: obtain gradient ∇$ℒ using 

a chain rule
¡ Use stochastic gradient descent (SGD) to 

optimize for Θ over many iterations
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1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks and 
GraphSAGE
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¡ Local network neighborhoods:
§ Describe aggregation strategies
§ Define computation graphs

¡ Stacking multiple layers:
§ Describe the model, parameters, training
§ How to fit the model?
§ Simple example for unsupervised and 

supervised training 
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¡ Assume we have a graph 𝑮:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ:×|=| is a matrix of node features
§ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene 

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]
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¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(|𝑉|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering
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End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]

12/6/18



CNN on an image:

Jure Leskovec, Stanford University 32

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)



But our graphs look like this:
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End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding 
window on the graph

§ Graph is permutation invariant



Single Convolutional neural network (CNN) layer 
with 3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

12/6/18

Idea: transform information at the neighbors and combine it:
§ Transform “messages” ℎ$ from neighbors: 𝑊$ ℎ$
§ Add them up: ∑$𝑊$ ℎ$



Idea: Node’s neighborhood defines a 
computation graph
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Determine node 
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]



¡ Key idea: Generate node embeddings based 
on local network neighborhoods 
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¡ Intuition: Nodes aggregate information from 
their neighbors using neural networks

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks



¡ Intuition: Network neighborhood defines a 
computation graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Every node defines a computation 
graph based on its neighborhood!



¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑢 is its input feature, 𝑥𝑢
§ Layer-𝑘 embedding gets information from nodes that 

are K hops away
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INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A
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xE
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xA
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Layer-2

Layer-1
Layer-0



¡ Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers
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INPUT GRAPH

TARGET NODE B

D
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?

?

?

?

What is in the box?



¡ Basic approach: Average information from 
neighbors and apply a neural network
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INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages 
from neighbors 

(2) apply neural network



¡ Basic approach: Average neighbor messages 
and apply a neural network
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Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings are 
equal to node features

Embedding after L 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
𝑣 at layer 𝑙h>? = x>

z> = h>
(@)

h>
(89.) = 𝜎(W8 I

A∈C(>)

hA
(8)

N(𝑣)
+ B8h>

(8)), ∀𝑙 ∈ {0, … , 𝐿 − 1}



𝒛D

How do we train the model to 
generate embeddings?

Need to define a loss function on the embeddings
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We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!" : the hidden representation of node 𝑣 at layer 𝑙
¡ 𝑊#: weight matrix for neighborhood aggregation
¡ 𝐵#: weight matrix for transforming hidden vector of 

self
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Trainable weight matrices 
(i.e., what we learn) 

Final node embedding

h1
(3) = x1

z1 = h1
(5)

h1
(670) = 𝜎(W6 8

8∈:(1)

h8
(6)

N(𝑣) + B6h1
(6)), ∀𝑙 ∈ {0, … , 𝐿 − 1}



¡ Many aggregations can be performed 
efficiently by (sparse) matrix operations

¡ Let 
¡ Then: ∑*∈,% ℎ*

(-) = A!,:H(-)

¡ Let 𝐷 be diagonal matrix where
𝐷!,! = Deg 𝑣 = |𝑁 𝑣 |
§ The inverse of 𝐷: 𝐷%& is also diagonal:
𝐷','%& = 1/|𝑁 𝑣 |

¡ Therefore,
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Matrix of hidden embeddings 𝐻%&!

𝒉'%&!

𝐻(-) = [ℎ2
(-)…ℎ|4|

(-)]5

𝐻(89.) = 𝐷0.𝐴𝐻(8);
0∈1(2)

ℎ0
(345)

|𝑁(𝑣)|



¡ Re-writing update function in matrix form:

§ Red: neighborhood aggregation
§ Blue:  self transformation

¡ In practice, this implies that efficient sparse 
matrix multiplication can be used ( J𝐴 is sparse)

¡ Note: not all GNNs can be expressed in matrix form, when 
aggregation function is complex 
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𝐻(89.) = 𝜎( U𝐴𝐻(8)𝑊8
I +𝐻 8 𝐵8I)

where U𝐴 = 𝐷0.𝐴
𝐻($) = [ℎ&

($)…ℎ|,|
($)]-



¡ Node embedding 𝒛1 is a function of input graph
¡ Supervised setting: we want to minimize the loss 
ℒ (see also slide 15):

min
$
ℒ(𝒚, 𝑓 𝒛! )

§ 𝒚: node label
§ ℒ could be L2 if 𝒚 is real number, or cross entropy 

if 𝒚 is categorical
¡ Unsupervised setting:
§ No node label available
§ Use the graph structure as the supervision!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47



¡ “Similar” nodes have similar embeddings
ℒ = 7

6&,6%

CE(𝑦*,!, DEC 𝑧*, 𝑧! )

§ Where 𝑦A,> = 1 when node 𝑢 and 𝑣 are similar
§ CE is the cross entropy (slide 16)
§ DEC is the decoder such as inner product (lecture 4)

¡ Node similarity can be anything from lecture 
3, e.g., a loss based on:
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Matrix factorization
§ Node proximity in the graph
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Directly train the model for a supervised task 
(e.g., node classification)
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Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network



Directly train the model for a supervised task 
(e.g., node classification)
¡ Use cross entropy loss (slide 16)
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Encoder output:
node embedding

Classification 
weights

Node class 
label

Safe or toxic drug?

ℒ = 8
1∈@

𝑦1log(𝜎(z1A𝜃)) + 1 − 𝑦1 log(1 − 𝜎 z1A𝜃 )
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(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

𝒛8
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(3) Train on a set of nodes, i.e., 
a batch of compute graphs
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(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!



¡ The same aggregation parameters are shared 
for all nodes:
§ The number of model parameters is sublinear in 
|𝑉| and we can generalize to unseen nodes!
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INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

𝑊9 𝐵9
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Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z<
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Train with snapshot New node arrives
Generate embedding 

for new node

¡ Many application settings constantly encounter 
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”

z<



¡ Recap: Generate node embeddings by 
aggregating neighborhood information
§ We saw a basic variant of this idea
§ Key distinctions are in how different approaches 

aggregate information across the layers

¡ Next: Describe GraphSAGE graph neural 
network architecture
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1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks and 
GraphSAGE
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So far we have aggregated the neighbor 
messages by taking their (weighted) average

Can we do better?
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INPUT GRAPH
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[Hamilton et al., NIPS 2017]
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INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Any differentiable function that 
maps set of vectors in 𝑁(𝑢) to 

a single vector

h1
(670) = 𝜎([W6 K AGG h8

(6), ∀𝑢 ∈ 𝑁 𝑣 , B6h1
(6)])

How does this message passing architecture differ?



¡ ℓ' Normalization: 

§ ℎ*+ ←
,67

,67 8
∀𝑣 ∈ 𝑉 where 𝑢 % = ∑! 𝑢!% (ℓ%-norm)

§ Without ℓ% normalization, the embedding vectors have 
different scales (ℓ%-norm) for vectors

§ In some cases (not always), normalization of embedding 
results in performance improvement 

§ After ℓ% normalization, all vectors will have the same ℓ%-
norm
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Optional: Apply L2 normalization to h(
(*+!) embedding at every layer

h1
(670) = 𝜎([W6 K AGG h8

(6), ∀𝑢 ∈ 𝑁 𝑣 , B6h1
(6)])



¡ Simple neighborhood aggregation:

¡ GraphSAGE:
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Concatenate neighbor embedding 
and self embedding

Flexible aggregation function
instead of mean

h!
(9:&) = 𝜎(W9 Q

#∈;(!)

h#
(9)

𝑁(𝑣)
+ B9h!

(9))

h1
(670) = 𝜎([W6 K AGG h8

(6), ∀𝑢 ∈ 𝑁 𝑣 , B6h1
(6)])



¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply 
symmetric vector function

¡ LSTM: Apply LSTM to reshuffled of neighbors
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Element-wise mean/max

AGG = Q
#∈;(!)

h#
(9)

𝑁(𝑣)

AGG = 𝛾({MLP(h8
(6)), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([h8
(6), ∀𝑢 ∈ 𝜋 𝑁 𝑣 ])



𝑣 𝑣
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Key idea: Generate node embeddings based on 
local neighborhoods 

§ Nodes aggregate “messages” from their neighbors 
using neural networks

¡ Graph convolutional networks:
§ Basic variant: Average neighborhood information and 

stack neural networks
¡ GraphSAGE:

§ Generalized neighborhood aggregation



¡ In this lecture, we introduced
§ Basics of neural networks

§ Loss, Optimization, Gradient, SGD, non-linearity, MLP

§ Idea for Deep Learning for Graphs
§ Multiple layers of embedding transformation
§ At every layer, use the embedding at previous layer as 

the input
§ Aggregation of neighbors and self embeddings

§ Graph Convolutional Network
§ Mean aggregation; can be expressed in matrix form

§ GraphSAGE: more flexible aggregation
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