Stanford CS224W:
Node Embeddings



Recap: Traditional ML for Graphs

Given an input graph, extract node, link
and graph-level features, learn a model
(SVM, neural network, etc.) that maps

features to labels.

Input Structured
Graph Features

Feature engineering

(node-level, edge-level, graph-
level features)

Learning

Algorithm —> Prediction

Downstream
prediction task
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Graph Representation Learning

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Input Structured Learning Brediction

Graph Features Algorithm
t Representation Learning -- Downstream
Engifiomgng Automatically prediction task

learn the features
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Graph Representation Learning

Goal: Efficient task-independent feature
learning for machine learning with graphs!

node vector
u >
. d
fru—->R N - Y,
Rd

Feature representation,
embedding
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Why Embedding?

Similarity of embeddings between nodes indicates
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)

Encode network information

Potentially used for many downstream predictions

Vec Tasks
* Node classification
. , « Link prediction
~ » Graph classification

. d « Anomalous node detection
embeddings R  Clustering
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Example Node Embedding

2D embedding of nodes of the Zachary’s
Karate Club network:
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Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.
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https://arxiv.org/pdf/1403.6652.pdf

Stanford CS224W:
Node Embeddings:
Encoder and Decoder



Setup

Assume we have a graph G:
Vis the vertex set.
A is the adjacency matrix (assume binary).

For simplicity: no node features or extra
information is used

(0 1 0 1)

e 1 0O O 1

V: {1, 2,3, 4} 0 0 0 1
(1 1 1 0
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Embedding Nodes

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph
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Embedding Nodes

Goal: similarity(u,v) =~ z,z,
in the original network Similarity of the embedding

Need to definel

.Zu
\ """"""""" .Z’U
<\ /“\ encpde nodes g
\/ — e
ENC(v)
original network embedding space
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Learning Node Embeddings

2/14/21

Encoder maps from nodes to embeddings
Define a node similarity function (i.e., a
measure of similarity in the original network)
Decoder maps from embeddings to the
similarity score

Optimize the parameters of the encoder so
that: .

szu
similarity(u,v) =~ z.)z,

in the original network Similarity of the embedding
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Two Key Components

Encoder: maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

specifies how the
relationships in vector space map to the
relationships in the original network

similarity(u,v) = zlz, Decoder
Similarity of u and v in dot product between node

the original network embeddings
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“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

ENClv) =z,=Z v

dx|V| matrix, each column is a node
ZeR embedding [what we learn /
optimize]

) iIndicator vector, all zeroes
v el except a one in column
indicating node v
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“Shallow” Encoding

Simplest encoding approach: encoder is just an
embedding-lookup

embedding vector for a

embedding specific node
matrix

\
7 —

Dimension/size
. of embeddings

~
one column per node
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“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector
(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec
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Framework Summary

2/14/21

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z,, for all nodesu € V

We will cover deep encoders (GNNSs) in Lecture 6
Decoder: based on node similarity.

Objective: maximize z.z,, for node pairs (u, v)
that are similar
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How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they...

are linked?

share neighbors?

have similar “structural roles”?
We will now learn node similarity definition that uses
random walks, and how to optimize embeddings for

such a similarity measure.
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Note on Node Embeddings

This is way of
learning node embeddings

We are not utilizing node labels

We are not utilizing node features

The goal is to directly estimate a set of coordinates
(i.e., the embedding) of a node so that some aspect

of the network structure (captured by DEC) is
preserved

These embeddings are

They are not trained for a specific task but can be
used for any task.
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Stanford CS224W:
Random Walk Approaches for
Node Embeddings



Notation

Vector z,;:

The embedding of node u (what we aim to find).
Probability P(v |z,,) : ¢ Our model prediction based on z,

The (predicted) probability of visiting node v on
random walks starting from node wu.

Non-linear functions used to produce predicted probabilities
Softmax function
Turns vector of K real values (model predlgtlons) into
K probabilities that sum to 1: 6(2); =

Z] 16 J
Sigmoid function:
S-shaped function that turns real values into the range of (0, 1).

Written as S(x) = 1+Z-x'
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Random Walk

2/14/21

10
Step 3 I l Step 4 @
Step 5
\
11
Given a graph and a starting

Step 1 Step 2 point, we select a neighbor of
\ it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move to it, etc.

\ The (random) sequence of
@ points visited this way is a
random walk on the graph.
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Random-Walk Embeddings

probability that u
Z;E Z, ~ and v co-OCccur on
a random walk over
the graph
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Random-Walk Embeddings

Estimate probability of visiting node v on a
random walk starting from node u using
some random walk strategy R

random walk statistics:

Similarity in embedding space (Here: dot
product=cos(6)) encodes random walk “similarity”
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Why Random Walks?

Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node u
visits v with high probability, w and v are
similar (high-order multi-hop information)

Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks
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Unsupervised Feature Learning

2/1

4/21

Intuition: Find embedding of nodes in
d-dimensional space that preserves similarity

ldea: Learn node embedding such that nearby
nodes are close together in the network

Given a node u, how do we define nearby
nodes?

Nr(u) ... neighbourhood of u obtained by some
random walk strategy R



Feature Learning as Optimization

Given G = (I, E),
Our goal is to learn a mapping f:u — R%:

fu) =z,
Log-likelihood objective:

max > 10gP(Na ()| 2,)

uev
Ngp(u) is the neighborhood of node u by strategy R

Given node u, we want to learn feature
representations that are predictive of the nodes
in its random walk neighborhood Ng (u)

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Random Walk Optimization

Run short fixed-length random walks
starting from each node u in the graph using
some random walk strategy R

For each node u collect Ni (u), the multiset”
of nodes visited on random walks starting

fromu
Optimize embeddings according to: Given

node u, predict its neighbors Ni (u)

m}gx z log P(Ng(u)| Z,,) = Maximum likelihood objective

uev

*Nr(u) can have repeat elements since nodes can be visited multiple times on random walks
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Random Walk Optimization

Equivalently,

L=) ) —logP(v|z)

uevV veNgp(u)

Optimize embeddings z, to maximize
the likelihood of random walk co-occurrences

P(vlz,)
T Why softmax?
exXPD\Z,, Z We want node v to be
P (U | yA ) — p( u V) most similar to node u
u Z ex (ZTZ ) (out of all nodes n).
nev P\ZyZn Intuition: }; exp(x;) =

max exp(x;)
l
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Random Walk Optimization

Putting it all together:

exp(zZ,Zy)
=2, ), sl

uevV veNg(u)

Optimizing random walk embeddings =

Finding embeddings z,, that minimize L
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Random Walk Optimization

B exp(ZyZy)
=2 2 T ey

uevV veNg(u)

Nested sum over nodes gives
O(|V]%) complexity!
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Random Walk Optimization

B exp(Zy Zy)
= 2 z LS o a2

uev veNg(u)
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Negative Sampling

Why is the approximation valid?
Technically, this is a different objective. But

SOIUtion: N egative Sa m pling Negative Sampling is a form of Noise

Contrastive Estimation (NCE) which approx.
maximizes the log probability of softmax.

New formulation corresponds to using a

T logistic regression (sigmoid func.) to
eXp Zu Zv distinguish the target node v from nodes n;
) sampled from background distribution P,.
T More at https: '
ps://arxiv.org/pdf/1402.3722.pdf
ZnEV eXp (Zu Zn

sigmoid function random distribution
(makes each term a “probability” over nOd es

between 0 and 1)

Instead of normalizing w.r.t. all nodes, just
normalize against k random “negative samples” n;

2/14/21
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Negative Sampling

exp(z,.z random distribution
log( . vT ) over nodes
ZnEV exp(zu Zn)

2

log (a(zgzv ) — zl; log (a(zgzni)) , n;~Py

l

= Sample k negative nodes each with prob.
proportional to its degree

= Two considerations for k (# negative samples):
1. Higher k gives more robust estimates
2. Higher k corresponds to higher bias on negative events

In practice k =5-20

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Stochastic Gradient Descent

= After we obtained the objective function, how do
we optimize (minimize) it?

L=) % -logP(v]z,)

UEV veENR(U)

" Gradient Descent: a simple way to minimize L :
" |nitialize z; at some randomized value for all i.

" |terate until convergence.

. . . 0L . i
" Forall i, compute the derivative ——. n: learning rate
l

" For all i, make a step towards the direction of derivative:z; <« z; — N5,
l
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Stochastic Gradient Descent

= Stochastic Gradient Descent: Instead of evaluating
gradients over all examples, evaluate it for each
individual training example.

" |nitialize z; at some randomized value for all i.

" |terate until convergence: ™ = Z —log(P(v|zy))
VENR(u)

. . . L. aLW
* Sample a node i, for all j calculate the derivative

aZj |

oL@
aZj ]

" Forall j, update:z; « z; — 1
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Random Walks: Summary

Run short fixed-length random walks starting
from each node on the graph

For each node u collect N (1), the multiset of
nodes visited on random walks starting from u

Optimize embeddings using Stochastic
Gradient Descent:

L=) > -log(P(vlz)

UueV veNg(u)

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



How should we randomly walk?

= So far we have described how to optimize
embeddings given a random walk strategy R

= What strategies should we use to run these
random walks?

= Simplest idea: Just run fixed-length, unbiased
random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013)

= The issue is that such notion of similarity is too constrained

= How can we generalize this?

Reference: Perozzi et al. 2014. Deep\Walk: Online Learning of Social Representations. KDD.
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Overview of node2vec

Goal: Embed nodes with similar network
neighborhoods close in the feature space.

We frame this goal as a maximum likelihood
optimization problem, independent to the
downstream prediction task.

Key observation: Flexible notion of network

neighborhood N (u) of node u leads to rich node
embeddings

Develop biased 2" order random walk R to
generate network neighborhood Np (1) of node u

Reference: Grover et al. 2016. node?vec: Scalable Feature Learning for Networks. KDD.

2/14/21
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node2vec: Biased Walks

Idea: use flexible, biased random walks that can
trade off between and views of the
network (Grover and Leskovec, 2016).



https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

node2vec: Biased Walks

Two classic strategies to define a neighborhood
Ny (u) of a given node u:

Walk of length 3 (N (u) of size 3):
Nprs(u) = { 51,52,53} Local microscopic view

Nprs(u) = { s4,55,5,} Global macroscopic view
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BFS vs. DFS

BFS:
Micro-view of
neighbourhood

DFS:
Macro-view of
neighbourhood
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Interpolating BFS and DFS

Biased fixed-length random walk R that given a
node u generates neighborhood N (u)
Two parameters:
Return parameter p:
Return back to the previous node

In-out parameter q:

Moving outwards (DFS) vs. inwards (BFS)
Intuitively, q is the “ratio” of BFS vs. DFS
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Biased Random Walks

Biased 2"9-order random walks explore network
neighborhoods:

Rnd. walk just traversed edge (s;, w) and is now at w
Insight: Neighbors of w can only be:

Same distance to s4

Back to s4

Idea: Remember where the walk came from
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Biased Random Walks

Walker came over edge (s, w) and is at w.
Where to go next?

1/p,1/q,1 are
unnormalized
probabilities

p, g model transition probabilities
p ... return parameter
q ... "walk away” parameter
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Biased Random Walks

Walker came over edge (s, w) and is at w.

Where to go next?

W —

BFS-like walk: Low value of p
DFS-like walk: Low value of g

Targett Prob. Dist. (s4, 1)

1/p| O

1 | 1
1/g| 2
1/qg| 2

Unnormalized
transition prob.
segmented based
on distance from s,

N (u) are the nodes visited by the biased walk
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node2vec algorithm

2/1

4/21

1) Compute random walk probabilities
2) Simulate r random walks of length [ starting

from each node u
3) Optimize the node2vec objective using

Stochastic Gradient Descent

Linear-time complexity
All 3 steps are individually parallelizable



Other Random Walk Ideas

Different kinds of biased random walks:
Based on node attributes (Dong et al., 2017).
Based on learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:

Directly optimize based on 1-hop and 2-hop random walk
probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:

Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al.

2016’s HARP).
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https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845

Summary so far

Core idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.
Different notions of node similarity:
Naive: similar if 2 nodes are connected
Neighborhood overlap (covered in Lecture 2)
Random walk approaches (covered today)
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Summary so far

So what method should | use..?
No one method wins in all cases....

E.g., node2vec performs better on node classification
while alternative methods perform better on link
prediction (Goyal and Ferrara, 2017 survey)

Random walk approaches are generally more
efficient

In general: Must choose definition of node
similarity that matches your application!
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Stanford CS224W:
Embedding Entire Graphs



Embedding Entire Graphs

Goal: Want to embed a subgraph or an entire
graph G. Graph embedding: z..

----------
......................
------
‘‘‘‘‘
-----
. L)
e
‘e
.
.
.

/ \\u a, Z;
>
original network embedding space

Tasks:

Classifying toxic vs. non-toxic molecules
ldentifying anomalous graphs
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Simple idea 1:
Run a standard graph embedding
technique on the (sub)graph G
Then just sum (or average) the node
embeddings in the (sub)graph G

ZGZZZU

VEG

Used by Duvenaud et al., 2016 to classify
molecules based on their graph structure
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Approach 2

Idea 2: Introduce a “virtual node” to
represent the (sub)graph and run a standard
graph embedding technique

.................
------------------
........
.~
N
.~
.
“
.
.
*
.
.
.
‘e
o

/ \ ....,".ZS
|
original network embedding space

Proposed by Li et al., 2016 as a general
technique for subgraph embedding
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Approach 3: Anonymous Walk Embeddings

States in anonymous walks correspond to the
index of the first time we visited the node in a
random walk

Anonymous Walk | Anonymous Walk 2

0->6>6>60->60 0->6>0>6-06

Anonymous Walk Embeddings, ICML 2018 https://arxiv.org/pdf/1805.11921.pdf
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https://arxiv.org/pdf/1805.11921.pdf

Approach 3: Anonymous Walk Embeddings

Agnostic to the identity of the nodes visited
(hence anonymous)

Example RW1:

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Note: RW2 gives the same anonymous walk

node A
node B
node C
node B
node C

Jure

Random Walk 1

node 1
node 2 (different from node 1)
node 3 (different from node 1, 2)

node 2 (same as the node in step 2)
node 3 (same as the node in step 3)

Random Walk 2

B ®
®

® ©

Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55



Number of Walks Grows

Growth of Anonymous Walks with Length

10,000,000 4M
n
b
© 1,000,000 679K
; 116K
‘g 100,000
g 21K
> 10,000 4K
5
5 1,000 877
“5 203
'CI_J 100 52
0 15
:E’ 10 5
> 2

1

2 3 4 5 5 7 Bl 9 10 11 12

Length of Anonymous Walks

Number of anonymous walks grows exponentially:

wy=111, w,=112, wa= 121, w,= 122, we= 123
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Simple Use of Anonymous Walks

Simulate anonymous walks w; of [ steps and
record their counts

For example:
Setl =3

Then we can represent the graph as a 5-dim vector

Since there are 5 anonymous walks w; of length 3: 111, 112,
121, 122, 123

Z |i] = probability of anonymous walk w; in G

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57



Sampling Anonymous Walks

Sampling anonymous walks: Generate
independently a set of m random walks

How many random walks m do we need?

We want the distribution to have error of more than
€ with prob. less than 9:

For example:
There are n = 877
2 l 217 2 l 5 anonymous walks of length
= |— — — [l =7.If we set
m 52 ( Og( ) Og( )) e =0.1and § = 0.01 then
we need to generate
m=122,500 random walks
where: 1 is the total number of anon. walks of length L.
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New idea: Learn Walk Embeddings

Rather than simply represent each walk by the
fraction of times it occurs, we learn embedding
z; of anonymous walk w;
Learn a graph embedding Z ; together with all
the anonymous walk embeddings z;
/Z ={z;:i =1..n}, where n is the number of
sampled anonymous walks.

How to embed walks?
Idea: Embed walks s.t. the next walk can be
predicted

2/14/2



Learn Walk Embeddings

Graph d

A vector parameter z; for input graph

The embedding of entire graph to be learned
Starting from node 1: Sample anonymous m
random walks, e.g. Wi W2 W3 W

@ . O©+€ 2'% 0 ¢
2 (2] 3 p) p)
Learn to predict walks that co-occur in A-size

window (e.g. predict w, given wy, w3 if A = 1)
Objective:

T—A
max z log P(Wg|We_p, ooy Werp, Zg)

Sum the ottu;éctive over all nodes in the graph
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Learn Walk Embeddings

Run T different random walks from u each of length (:
Nr(w) = {wi, wy .. wr}

Learn to predict walks that co-occur in A-size window
Estimate embedding z; of anonymous walk w;

Let n be number of all possible walk embeddings
T—A

1
Objective: max - 2 log P(We|[{wi_p, oo, Wesn, Z )
' t=A
All possible walks

exp(y(wy)) . . :
) — (require negative sampling)

Y exp(y(wy)
1
y(w)) =b+U- (cat(ﬁZiAz_A Zi,Zg))

1 . . .
cat(EZiAz_A Z; ,Zg) means an average of anonymous walk embeddings in window,
concatenated with the graph embedding z

b € R, U € R? are learnable parameters. This represents a linear layer.

P(th{wt—A' vy Wit A ZG}) —

Anonymous Walk Embeddings, ICML 2018 https://arxiv.org/pdf/1805.11921.pdf
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Learn Walk Embeddings

2/14/21

We obtain the graph

embedding z. (learnable

parameter) after

optimization

Use z;to make predictions

(e.g. graph classification)
Optionl: Inner product
Kernel ZCT?1ZGz (Lecture 2)

Option2: Use a neural
network that takes z; as
input to classify

Overall Architecture
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We discussed 3 ideas to graph embeddings
Approach 1: Embed nodes and sum/avg them

Approach 2: Create super-node that spans the
(sub) graph and then embed that node

Approach 3: Anonymous Walk Embeddings

Idea 1: Sample the anon. walks and represent the
graph as fraction of times each anon walk occurs

Idea 2: Embed anonymous walks, concatenate their
embeddings to get a graph embedding
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Preview: Hierarchical Embeddings

We will discuss more advanced ways to obtain
graph embeddings in Lecture 8.

We can hierarchically cluster nodes in graphs,
and sum/avg the node embeddings according
to these clusters.

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification
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How to Use Embeddings

How to use embeddings z; of nodes:
Clustering/community detection: Cluster points z;
Node classification: Predict label of node i based on z;

Link prediction: Predict edge (i, j) based on (z;, zj)

Where we can: concatenate, avg, product, or take a difference
between the embeddings:

Concatenate: f (z;, ;)= 9([zi, z])

Hadamard: f(z;, z;)= g(z; * z;) (per coordinate product)

Ssum/Avg: f(z;,zj)= g(z; + z;)

Distance: f(z;, zj)= g(l|z; — z|l2)
Graph classification: graph embedding z. via aggregating
node embeddings or anonymous random walks.
Predict label based on graph embedding z.
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Today’s Summary

We discussed graph representation learning, a way to
learn node and graph embeddings for downstream
tasks, without feature engineering.

Encoder-decoder framework:

Encoder: embedding lookup

Decoder: predict score based on embedding to match
node similarity

Node similarity measure: (biased) random walk
Examples: DeepWalk, Node2Vec

Extension to Graph embedding: Node embedding
aggregation and Anonymous Walk Embeddings
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