Stanford CS224W:
Traditional Methods for




Stanford CS224W:
Further Course Logistics




Course Logistics: Q&A

Two ways to ask questions during lecture:
In-person (encouraged)
On Ed:

At the beginning of class, we will open a new
discussion thread dedicated to this lecture

When to ask on Ed?

If you are watching the livestream remotely

If you have a minor clarifying question

If we run out of time to get to your question live
Otherwise, try raising your hand first!

Class goes till 3pm (not 2:50pm, sorry)
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Course Logistics: Colab o

Colabs 0 and 1 will be released on our course
website at 3pm today (Thu 9/23)
Colab 0:

Does not need to be handed-in
TAs will hold two recitations (on Zoom) to walk
through Colab O with you:

Federico — Friday (9/24), 3-5pm PT

Yige — Monday (9/27), 10am-12pm PT

Links to Zoom will be posted on Ed
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Course Logistics: Colab 1

Colabs 0 and 1 will be released on our course
website at 3pm today (Thu 9/23)
Colab 1:
Due on Thursday 10/07 (2 weeks from today)
Submit written answers and code on Gradescope

Will cover material from Lectures 1-4, but you can
get started right away!
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Stanford CS224W:
Traditional Methods for




Machine Learning Tasks: Review

Node-level prediction
Link-level prediction
Graph-level prediction

Graph-level
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Traditional ML Pipeline

Design features for nodes/links/graphs
Obtain features for all training data

e RP

."°-.,(.3raph features
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Traditional ML Pipeline

Train an ML model:

Random forest
SVM

Neural network, etc.

X1 —} Y1

XN —} YN

Apply the model:

Given a new
node/link/graph, obtain
its features and make a
prediction

x oy
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This Lecture: Feature Design

Using effective features over graphs is the key
to achieving good model performance.
Traditional ML pipeline uses hand-designed

features.
In this lecture, we overview the traditional

features for:
Node-level prediction
Link-level prediction

Graph-level prediction
For simplicity, we focus on undirected graphs.
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Machine Learning in Graphs

Goal: Make predictions for a set of objects

Design choices:
Features: d-dimensional vectors
Objects: Nodes, edges, sets of nodes,
entire graphs
Objective function:

What task are we aiming to solve?
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Machine Learning in Graphs

Example: Node-level prediction

How do we learn the function?
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Stanford CS224W:
Node-Level Tasks and
Features




Node-Level Tasks

O o @
? . 2 _,

Machine ‘

Learning

Node classification

ML needs features.
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Node-Level Features: Overview

Goal: Characterize the structure and position of
a node in the network:

Node degree

Node centrality

Clustering coefficient Node feature

Graphlets

o
Py
.
.
“““
s
"
s
Py
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Node Features: Node Degree

The degree k,, of node v is the number of
edges (neighboring nodes) the node has.
Treats all neighboring nodes equally.
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Node Features: Node Centrality

Node degree counts the neighboring nodes
without capturing their importance.
Node centrality ¢, takes the node importance

in a graph into account
Different ways to model importance:

Eigenvector centrality

Betweenness centrality
Closeness centrality
and many others...
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Node Centrality (1)

9/27/2021

A node v is important if surrounded by important
neighboring nodes u € N (v).

We model the centrality of node v as the sum of
the centrality of neighboring nodes:

A Is normalization constant (it will turn
out to be the largest eigenvalue of A)

Notice that the above equation models centrality
in a recursive manner. How do we solve it?
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Node Centrality (1)

9/27/2021

Rewrite the recursive equation in the matrix form.

1
“ =7 2 “u Ac = Ac
UEN (v) « A: Adjacency matrix
A is normalization const Ay,=1ifueN®)
(largest eigenvalue of A) * c: Centrality vector

- A: Eigenvalue
We see that centrality c is the eigenvector of A!

The largest eigenvalue 4,,,,, is always positive and
unique (by Perron-Frobenius Theorem).

The eigenvector c,,, 4, corresponding to A,,,,, iS
used for centrality.
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Node Centrality (2)

A node is important if it lies on many shortest
paths between other nodes.

z #(shortest paths betwen s and t that contain v)
Cp =

#(shortest paths between s and t)

SFUV+L

Example:

¢y =cg=cg =0
CC — 3
(A-C-B, A-C-D, A-C-D-E)

CD — 3
(A-C-D-E, B-D-E, C-D-E)
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Node Centrality (3)

A node is important if it has small shortest path
lengths to all other nodes.
1

Y.+ Shortest path length between u and v

Example:

¢, =1/2+1+2+3)=1/8
(A-C-B, A-C, A-C-D, A-C-D-E)

cp=1/2+1+1+1)=1/5
(D-C-A, D-B, D-C, D-E)
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Node Features: Clustering Coefficient

Measures how connected v's neighboring
nhodes are:

_ #(edges among neighboring nodes)

v (%) €0,1]
2
#(node pairs among k,, neighboring nodes)
Examples. In our examples below the denominator is 6 (4 choose 2).

e, =1 e, = 0.5 e, =0
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Node Features: Graphlets

Observation: Clustering coefficient counts the
#(triangles) in the ego-network

e

3 triangles (out of 6 node triplets)

We can generalize the above by counting
#(pre-specified subgraphs, i.e., ).
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Node Features: Graphlets

Goal: Describe network structure around node u

Graphlets are small subgraphs that describe the
structure of node u’s network neighborhood

Analogy:
Degree counts #(edges) that a node touches
Clustering coefficient counts #(triangles) that a
node touches.
Graphlet Degree Vector (GDV): Graphlet-base
features for nodes

GDV counts #(graphlets) that a node touches
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Node Features: Graphlets

Considering graphlets of size 2-5 nodes we get:

Vector of 73 coordinates is a signature of a node
that describes the topology of node's neighborhood

Graphlet degree vector provides a measure of
a node’s local network topology:
Comparing vectors of two nodes provides a more

detailed measure of local topological similarity than
node degrees or clustering coefficient.

9/27/2021 é‘ Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Induced Subgraph & Isomorphism

Def: Induced subgraph is another graph, formed
from a subset of vertices and all of the edges

connecting the vertices in that subset.
Induced Not induced
subgraph: subgraph:

Def: Graph Isomorphism

Two graphs which contain the same number of nodes
connected in the same way are said to Ipe isomorphic.

ST

Isomorphic Non-Isomorphic

Node mapping: (62 c2), (el, c5), The right graph has cycles of length 3 but he left

(63 C4) (e5,c3), (e4,cl) Source: Mathoverflow graph does not, so the graphs cannot be isomorphic.
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Przulj et al., Bioinformatics 2004

Node Features: Graphlets

Graphlets: Rooted connected
induced non-isomorphic subgraphs:

Take some nodes u has
and all the edges  2-node 3-node graphlets 4-node graphlets graphlets:
between them. graphlet , , 4 10 13 14 0,1,2,3,5,
0 5 6 8 10, 11, ...
I 2 7 E I:I e 12
9
Graphlet id (Root/ G{I Gl G2 GE G4 GS Gﬁ GT GB

“‘position” of node u

5-node graphlets

18 29 25 5 32 34 36 410 43 46
(]
20 23 26 30 4’ 98
21 28 33 38 42 44 47
19 24 27@ 31 35 39 45

GS‘ Gll} Gl] G12 Glﬂ Gl4 GIS Glﬁ Gl? GIS Gl!}

520 55 4 o . 57 5 68 70 72
(\ Q¥ 6%/
49
DEYALOC TS
GE[} Gzl GZE G23 GZA GZS GZG GET GEE GE'EI
There are 73 different graphlets on up to 5 nodes
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Node Features: Graphlets

Graphlet Degree Vector (GDV): A count
vector of graphlets rooted at a given node.

Example' Possible graphlets up to size 3

W01 AN

Graphlet instances of node u:
d

C
O@:: C C GDV of node u:
a,b,c,d
b
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Node-Level Feature: Summary

They can be categorized as:

Node degree
Different node centrality measures

Node degree
Clustering coefficient
Graphlet count vector
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Node-Level Feature: Summary

Importance-based features: capture the
importance of a node in a graph

Node degree:

Simply counts the number of neighboring nodes

Node centrality:

Models importance of neighboring nodes in a graph

Different modeling choices: eigenvector centrality,
betweenness centrality, closeness centrality

Useful for predicting influential nodes in a graph

Example: predicting celebrity users in a social
network
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Node-Level Feature: Summary

Structure-based features: Capture topological
properties of local neighborhood around a node.

Node degree:
Counts the number of neighboring nodes
Clustering coefficient:
Measures how connected neighboring nodes are
Graphlet degree vector:
Counts the occurrences of different graphlets
Useful for predicting a particular role a node
plays in a graph:
Example: Predicting protein functionality in a
protein-protein interaction network.
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Discussion

Different ways to label nodes of the network:

® o .. Q l.l. .','" .JD ° QO @ 4 e '.
& @0 @40 s %00 000 -@q%
' 'l:. oe® e e Gof. o0o®
e ® .'.. L ... No DDDQOO ...
‘.‘- 005 e
9P
Node features defined so However, the features
far would allow to defines so far would not
distinguish nodes in the allow for distinguishing the

above example above node labelling
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Stanford CS224W:
Link Prediction Task and
Features




Link-Level Prediction Task: Recap

The task is to predict new links based on the
existing links.

At test time, node pairs (with no existing links)
are ranked, and top K node pairs are predicted.
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Link Prediction as a Task

1) Links missing at random:

Remove a random set of links and then
aim to predict them

2) Links over time:
Given G|ty, ty] a graph defined by edges
up to time t,
of edges (not in G[t,,t,]) that are |
predicted to appear in time G[tq, t{] Glto Lo

n = |E..,|: # new edges that appear during
the test period [t,, t/]

Take top n elements of L and count correct edges
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Link Prediction via Proximity

Methodology:

For each pair of nodes (x,y) compute score c(x,y)

For example, c(x,y) could be the # of common neighbors
of xand y

Sort pairs (x,y) by the decreasing score c(x,y)
Predict top n pairs as new links

See which of these links actually
appear in G[t,,t;]
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Link-Level Features: Overview

Distance-based feature
Local neighborhood overlap
Global neighborhood overlap
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Distance-Based Features

Example:

Spy = Spg = Spp = 2
Spe = Spr = 3

However, this does not capture the degree of
neighborhood overlap:

Node pair (B, H) has 2 shared neighboring nodes,
while pairs (B, E) and (A, B) only have 1 such node.
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Local Neighborhood Overlap

IN(v1) NN(vy)|
Example: IN(A)NN(B)|=|{C}| =1
IN(v1)NN(v7)|
IN(v1)UN(v,)]
NGNGB gl 1

"IN(A)UN(B)|  I{C.D}| 2

Example

_1
ZuEN(vl)ﬂN(vz) log(ky)

Example: t _ 1
P ‘log(kc) log4
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Global Neighborhood Overlap

Metric is always zero if the two nodes do not have
any neighbors in common.

However, the two nodes may still potentially be
connected in the future.

Global neighborhood overlap metrics resolve
the limitation by considering the entire graph.
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Global Neighborhood Overlap

count the number of walks of all
lengths between a given pair of nodes.

How to compute #walks between two

nodes?
Use powers of the graph adjacency matrix!
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Intuition: Powers of Adj Matrices

Recall: A,, =1ifu € N(v)

Let sz) = #walks of length K between u and v
We will show PH) = gF

P,(j,) = #walks of length 1 (direct neighborhood)
between uand v = A,, PY = 4,,
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Intuition: Powers of Adj Matrices

How to compute ng) ?

Step 1: Compute #walks of length 1 between each
of u’s neighbor and v

Step 2: Sum up these #walks across u’s neighbors

2 1
( ) Zl wi ( ) = Zl ui * Ay = A%w

(0:1:0:1%  (0.1.0 1\ /2i1i1 1)
e |10 00 1:0:0 1| [1 271 1
o Tloo o 1" lo.0.0 1] T |11 1 0
adjacency \1 1 1 O \1 1:1 0) \1 1 0 3/
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Global Neighborhood Overlap

count the number of walks of all
lengths between a pair of nodes.

How to compute #walks between two nodes?
Use adjacency matrix powers!

A, specifies #walks of length 1 (direct
neighborhood) between u and v.

A?w specifies #walks of length 2 (neighbor of
neighbor) between u and v.

And, A}, specifies t#walks of length L.
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Global Neighborhood Overlap

between v; and v, is calculated as
Sum over all walk lengths

#walks of length [
v1v2 2. m between v, and v,
o< f < 1: discount factor

Katz index matrix is computed in closed-form:

S=Zﬁi,4i = —-BA) -1
. 1\ J
1=1 Y
- Z?ioﬁiAi

by geometric series of matrices
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Link-Level Features: Summary

9/27/2021

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Captures how many neighboring nodes are shared
by two nodes.

Becomes zero when no neighbor nodes are shared.

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two
nodes.
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Stanford CS224W:
Graph-Level Features
and Graph Kernels




Graph-Level Features

We want features that characterize the
structure of an entire graph.

For example:
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Background: Kernel Methods

are widely-used for traditional

ML for graph-level prediction.
Idea: Design kernels instead of feature vectors.

Kernel K(G,G') € R measures similarity b/w data

Kernel matrix K = (K(G, G’))G . Must always be
positive semidefinite (i.e., has pc;sitive eigenvalues)
There exists a feature representation ¢(-) such that
K(G,G") =¢(G)'¢(G")

Once the kernel is defined, off-the-shelf ML model,
such as kernel SVM, can be used to make predictions.
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Graph-Level Features: Overview

Measure similarity between
two graphs:

Other kernels are also proposed in the literature
(beyond the scope of this lecture)

Random-walk kernel
Shortest-path graph kernel
And many more...

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison.” Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels.” Journal of Machine Learning Research 12.9 (2011).
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Graph Kernel: Key Idea

Key idea: Bag-of-Words (BoW) for a graph

9/27/2021

Recall: BoW simply uses the word counts as
features for documents (no ordering considered).

Naive extension to a graph: Regard nodes as words.

Since both graphs have 4 red nodes, we get the
same feature vector for two different graphs...

(N = (N
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Graph Kernel: Key Idea

Degl: @ Deg2:e Deg3:

B(ND = count(N] ) = [L, 2, 1

Obtains different features
for different graphs!

d(IN]) = count(XI ) =10, 2, 2]

Both Graphlet Kernel and Weisfeiler-Lehman
(WL) Kernel use Bag-of-* representation of
graph, where * is more sophisticated than
node degrees!
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Graphlet Features

Count the number of different
graphletsin a graph.

Note: Definition of graphlets here is slightly
different from node-level features.

The two differences are:

Nodes in graphlets here do not need to be connected (allows for
isolated nodes)

The graphlets here are not rooted.
Examples in the next slide illustrate this.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53



Graphlet Features

For k = 3, there are 4 graphlets.
91 9> g3
For k = 4, there are 11 graphlets

i O O O O O Shervashidzeet al., AISTATS 2011
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Graphlet Features

Given graph (-, and a graphlet list
define the graphlet count
vector [ € R"k as
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Graphlet Features

Examplefork =3. g, g, s 94
A A /o o’o
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Graphlet Kernel

Given two graphs, G and G', graphlet kernel is
computed as

K(G,G") =fs fer

if G and G’ have different sizes, that
will greatly skew the value.
normalize each feature vector

_f
Sum (f )

h K(G,G") =h; " hgr
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Graphlet Kernel

Limitations: Counting graphlets is expensive!
Counting size-k graphlets for a graph with size n
by enumeration takes n*.

This is unavoidable in the worst-case since
subgraphisomorphism test (judging whether a
graphis a subgraph of another graph) is NP-hard.
If a graph’s node degree is bounded by d, an

O (nd"*~1) algorithm exists to count all the

graphlets of size k.

Can we desngn a more effuuent graph kernel?
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Weisfeiler-Lehman Kernel

Use neighborhood structure to
iteratively enrich node vocabulary.

Generalized version of Bag of node degrees since
node degrees are one-hop neighborhood
information.

Algorithm to achieve this:
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Color Refinement

A graph G with a set of nodes V.

Assign an initial color ¢(®) (v) to each node v.
lteratively refine node colors by

where maps different inputs to different colors.

After K steps of color refinement, ¢ (v)
summarizes the structure of K-hop neighborhood
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Color Refinement (1)

Assign initial colors
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Color Refinement (2)

Hash aggregated colors

@ 9 9 9 Hash table
\ , 1,1 -
2 1,11 -
1,1111 -

2 © 2 @ ’
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Color Refinement (3)

Aggregated colors
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Color Refinement (4)

Aggregated colors

Hash aggregated colors

Hash table

G O—@ |2 -
\ , 25 > 7
3, > 8
4245 > 10
4,345 > 11
0 @ 9 O 52244 --> 12
52344 --> 13
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Weisfeiler-Lehman Graph Features

Colors

1,2,3,4,5,6,7,8,9,10,11,12,13

¢( ) 6,2,1,2,1,0,2,1,0,0, 0, 2, 1]
Counts

1,2,3,4,5,6,7,8,9,10,11,12,13
¢( ) =[6,2,1,2,1,1,1,0,1,1, 1, 0, 1]
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Weisfeiler-Lehman Kernel

222222222



Weisfeiler-Lehman Kernel

WL kernel is computationally efficient

The time complexity for color refinement at each stepiis
linear in #(edges), since it involves aggregating neighboring
colors.

When computing a kernel value, only colors
appeared in the two graphs need to be tracked.

Thus, #(colors) is at most the total number of nodes.
Counting colors takes linear-time w.r.t. #(nodes).

In total, time complexity is linear in #(edges).
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Graph-Level Features: Summary

Graphlet Kernel

Graph is represented as Bag-of-graphlets
Computationally expensive
Weisfeiler-Lehman Kernel

Apply K-step color refinement algorithm to enrich
node colors

Different colors capture different K-hop neighborhood
structures

Graph is represented as Bag-of-colors
Computationally efficient

Closely related to Graph Neural Networks (as we
will see!)
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Today’s Summary

Hand-crafted feature + ML model

Node-level:
Node degree, centrality, clustering coefficient, graphlets

Link-level:
Distance-based feature
local/global neighborhood overlap

Graph-level:
Graphlet kernel, WL kernel
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