
CS224W: Machine Learning with Graphs

Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs

Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Two ways to ask questions during lecture:
 In-person (encouraged)
 On Ed:

▪ At the beginning of class, we will open a new
discussion thread dedicated to this lecture

▪ When to ask on Ed?

▪ If you are watching the livestream remotely

▪ If you have a minor clarifying question

▪ If we run out of time to get to your question live

▪ Otherwise, try raising your hand first!

▪ Class goes till 3pm (not 2:50pm, sorry)
9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

 Colabs 0 and 1 will be released on our course
website at 3pm today (Thu 9/23)

 Colab 0:

▪ Does not need to be handed-in

▪ TAs will hold two recitations (on Zoom) to walk
through Colab 0 with you:

▪ Federico – Friday (9/24), 3-5pm PT

▪ Yige – Monday (9/27), 10am-12pm PT

▪ Links to Zoom will be posted on Ed

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

 Colabs 0 and 1 will be released on our course
website at 3pm today (Thu 9/23)

 Colab 1:

▪ Due on Thursday 10/07 (2 weeks from today)

▪ Submit written answers and code on Gradescope

▪ Will cover material from Lectures 1-4, but you can
get started right away!

CS224W: Machine Learning with Graphs

Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Node-level prediction
 Link-level prediction
 Graph-level prediction

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

C

A

B

D E

H

F

G

Link-level

?

Node-level?

?

Graph-level

 Design features for nodes/links/graphs
 Obtain features for all training data

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

C

A

B

D E

H

F

G

Node features

Graph features
Link features

∈ ℝ𝐷

∈ ℝ𝐷

∈ ℝ𝐷

 Train an ML model:

▪ Random forest

▪ SVM

▪ Neural network, etc.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

𝒙𝟏 𝑦1

𝒙𝑵 𝑦𝑁

 Apply the model:

▪ Given a new
node/link/graph, obtain
its features and make a
prediction

𝒙 𝑦

 Using effective features over graphs is the key
to achieving good model performance.

 Traditional ML pipeline uses hand-designed
features.

 In this lecture, we overview the traditional
features for:

▪ Node-level prediction

▪ Link-level prediction

▪ Graph-level prediction

 For simplicity, we focus on undirected graphs.

9/27/2021 10Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Goal: Make predictions for a set of objects

Design choices:
 Features: d-dimensional vectors
 Objects: Nodes, edges, sets of nodes,

entire graphs
 Objective function:

▪ What task are we aiming to solve?

119/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Example: Node-level prediction

 Given:

 Learn a function:

How do we learn the function?

129/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs

Jure Leskovec, Stanford University

http://cs224w.stanford.edu

14

? ?

?
?

?

Machine

Learning

Node classification

ML needs features.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Goal: Characterize the structure and position of
a node in the network:

▪ Node degree

▪ Node centrality

▪ Clustering coefficient

▪ Graphlets

9/27/2021 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Node feature

 The degree 𝑘𝑣 of node 𝑣 is the number of
edges (neighboring nodes) the node has.

 Treats all neighboring nodes equally.

9/27/2021 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

𝑘𝐴 = 1

𝑘𝐵 = 2

𝑘𝐶 = 3

𝑘𝐷 = 4

 Node degree counts the neighboring nodes
without capturing their importance.

 Node centrality 𝑐𝑣 takes the node importance
in a graph into account

 Different ways to model importance:

▪ Engienvector centrality

▪ Betweenness centrality

▪ Closeness centrality

▪ and many others…

9/27/2021 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Eigenvector centrality

 Eigenvector centrality:

▪ A node 𝑣 is important if surrounded by important
neighboring nodes 𝑢 ∈ 𝑁(𝑣).

▪ We model the centrality of node 𝑣 as the sum of
the centrality of neighboring nodes:

▪ Notice that the above equation models centrality
in a recursive manner. How do we solve it?

9/27/2021 18Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝜆 is normalization constant (it will turn

out to be the largest eigenvalue of A)

 Eigenvector centrality:
▪ Rewrite the recursive equation in the matrix form.

▪ We see that centrality 𝑐 is the eigenvector of 𝑨!

▪ The largest eigenvalue 𝜆𝑚𝑎𝑥 is always positive and
unique (by Perron-Frobenius Theorem).

▪ The eigenvector 𝒄𝑚𝑎𝑥 corresponding to 𝜆𝑚𝑎𝑥 is
used for centrality.

9/27/2021 19Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

B

C

D I
J

K

𝜆𝒄 = 𝑨𝒄
• 𝑨: Adjacency matrix

𝑨𝑢𝑣= 1 if 𝑢 ∈ 𝑁(𝑣)
• 𝒄: Centrality vector

• 𝜆: Eigenvalue

𝜆 is normalization const

(largest eigenvalue of A)

 Betweenness centrality:

▪ A node is important if it lies on many shortest
paths between other nodes.

▪ Example:

9/27/2021 20Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

𝑐𝐴 = 𝑐𝐵 = 𝑐𝐸 = 0
𝑐𝐶 = 3

(A-C-B, A-C-D, A-C-D-E)

𝑐𝐷 = 3
(A-C-D-E, B-D-E, C-D-E)

 Closeness centrality:

▪ A node is important if it has small shortest path
lengths to all other nodes.

▪ Example:

9/27/2021 21Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

𝑐𝐴 = 1/(2 + 1 + 2 + 3) = 1/8
(A-C-B, A-C, A-C-D, A-C-D-E)

𝑐𝐷 = 1/(2 + 1 + 1 + 1) = 1/5

(D-C-A, D-B, D-C, D-E)

 Measures how connected 𝑣′𝑠 neighboring
nodes are:

 Examples:

9/27/2021 22Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑣

𝑣 𝑣

𝑒𝑣 = 1 𝑒𝑣 = 0.5 𝑒𝑣 = 0

#(node pairs among 𝑘𝑣 neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).

 Observation: Clustering coefficient counts the
#(triangles) in the ego-network

 We can generalize the above by counting
#(pre-specified subgraphs, i.e., graphlets).

9/27/2021 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑣 𝑣

3 triangles (out of 6 node triplets)

𝑒𝑣 = 0.5

𝑣 𝑣

 Goal: Describe network structure around node 𝑢

▪ Graphlets are small subgraphs that describe the
structure of node 𝑢’s network neighborhood

Analogy:
 Degree counts #(edges) that a node touches
 Clustering coefficient counts #(triangles) that a

node touches.
 Graphlet Degree Vector (GDV): Graphlet-base

features for nodes

▪ GDV counts #(graphlets) that a node touches
9/27/2021 24Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

𝑢 E

 Considering graphlets of size 2-5 nodes we get:

▪ Vector of 73 coordinates is a signature of a node
that describes the topology of node's neighborhood

 Graphlet degree vector provides a measure of
a node’s local network topology:

▪ Comparing vectors of two nodes provides a more
detailed measure of local topological similarity than
node degrees or clustering coefficient.

9/27/2021 25Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.eduC

A
B

𝑢 E

 Def: Induced subgraph is another graph, formed
from a subset of vertices and all of the edges
connecting the vertices in that subset.

 Def: Graph Isomorphism
▪ Two graphs which contain the same number of nodes

connected in the same way are said to be isomorphic.

9/27/2021 26Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Isomorphic
Node mapping: (e2,c2), (e1, c5),

(e3,c4), (e5,c3), (e4,c1)

Non-Isomorphic
The right graph has cycles of length 3 but he left

graph does not, so the graphs cannot be isomorphic.

C

A

B

𝑢 E

C

B

𝑢
Induced

subgraph:
C

B

𝑢
Not induced

subgraph:

Source: Mathoverflow

Graphlets: Rooted connected
induced non-isomorphic subgraphs:

9/27/2021 27Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Przulj et al., Bioinformatics 2004

There are 73 different graphlets on up to 5 nodes

Graphlet id (Root/

“position” of node 𝑢)

C

A

B

𝑢 E

𝑢 has

graphlets:
0, 1, 2, 3, 5,
10, 11, …

Take some nodes

and all the edges

between them.

 Graphlet Degree Vector (GDV): A count
vector of graphlets rooted at a given node.

 Example:

9/27/2021 28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the
symmetries of the graph

The graphlet degree vector is a feature vector with
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the
symmetries of the graph

The graphlet degree vector is a feature vector with
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the
symmetries of the graph

The graphlet degree vector is a feature vector with
the frequency of the node in each orbit position

Possible graphlets up to size 3

𝑢

𝑎 𝑏 𝑐 𝑑

GDV of node 𝑢:

𝑎, 𝑏, 𝑐, 𝑑
[2,1,0,2]

Graphlet instances of node u:

 We have introduced different ways to obtain
node features.

 They can be categorized as:

▪ Importance-based features:

▪ Node degree

▪ Different node centrality measures

▪ Structure-based features:

▪ Node degree

▪ Clustering coefficient

▪ Graphlet count vector

9/27/2021 29Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Importance-based features: capture the
importance of a node in a graph

▪ Node degree:

▪ Simply counts the number of neighboring nodes

▪ Node centrality:

▪ Models importance of neighboring nodes in a graph

▪ Different modeling choices: eigenvector centrality,
betweenness centrality, closeness centrality

 Useful for predicting influential nodes in a graph

▪ Example: predicting celebrity users in a social
network

9/27/2021 30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Structure-based features: Capture topological
properties of local neighborhood around a node.
▪ Node degree:

▪ Counts the number of neighboring nodes

▪ Clustering coefficient:
▪ Measures how connected neighboring nodes are

▪ Graphlet degree vector:
▪ Counts the occurrences of different graphlets

 Useful for predicting a particular role a node
plays in a graph:
▪ Example: Predicting protein functionality in a

protein-protein interaction network.
9/27/2021 31Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Different ways to label nodes of the network:

32

Figure 3: Complementary visualizations of LesMisérables co-
appearance network generated by node2vec with label colors
reflectinghomophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling toapproximate thesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically significant
with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-

rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

oneor morelabelsfrom afiniteset L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification

on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.
• Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
• Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome ‘ familiar strangers’ , that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.

For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to find, lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and therelativeperformance

Figure 3: Complementary visualizations of LesMisérables co-
appearance network generated by node2vec with label colors
reflectinghomophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling to approximatethesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically significant
with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

oneor morelabelsfrom afiniteset L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification

on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.
• Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
• Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome ‘ familiar strangers’ , that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.

For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to find, lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and therelativeperformance

Node features defined so

far would allow to

distinguish nodes in the

above example

However, the features

defines so far would not

allow for distinguishing the

above node labelling

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs

Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 The task is to predict new links based on the
existing links.

 At test time, node pairs (with no existing links)
are ranked, and top 𝐾 node pairs are predicted.

 The key is to design features for a pair of nodes.

9/27/2021 34Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

?

?

Two formulations of the link prediction task:
 1) Links missing at random:

▪ Remove a random set of links and then
aim to predict them

 2) Links over time:
▪ Given 𝐺[𝑡0 , 𝑡0

′] a graph defined by edges
up to time 𝑡0

′ , output a ranked list L
of edges (not in 𝐺[𝑡0 , 𝑡0

′]) that are
predicted to appear in time 𝐺[𝑡1 , 𝑡1

′]

▪ Evaluation:
▪ n = |Enew|: # new edges that appear during

the test period [𝑡1, 𝑡1
′]

▪ Take top n elements of L and count correct edges
9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

𝐺[𝑡0, 𝑡0
′]

𝐺[𝑡1, 𝑡1
′]

 Methodology:

▪ For each pair of nodes (x,y) compute score c(x,y)

▪ For example, c(x,y) could be the # of common neighbors
of x and y

▪ Sort pairs (x,y) by the decreasing score c(x,y)

▪ Predict top n pairs as new links

▪ See which of these links actually
appear in 𝐺[𝑡1 , 𝑡1

′]

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

X

 Distance-based feature
 Local neighborhood overlap
 Global neighborhood overlap

9/27/2021 37Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Link feature

Shortest-path distance between two nodes
 Example:

 However, this does not capture the degree of
neighborhood overlap:

▪ Node pair (B, H) has 2 shared neighboring nodes,
while pairs (B, E) and (A, B) only have 1 such node.

9/27/2021 38Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑆𝐵𝐻 = 𝑆𝐵𝐸 = 𝑆𝐴𝐵 = 2

C

A

B

D E

H

F

G
𝑆𝐵𝐺 = 𝑆𝐵𝐹 = 3

Captures # neighboring nodes shared between
two nodes 𝒗𝟏 and 𝒗𝟐:
 Common neighbors: |𝑁 𝑣1 ∩𝑁 𝑣2 |

▪ Example: 𝑁 𝐴 ∩𝑁 𝐵 = 𝐶 = 1

 Jaccard’s coefficient:
|𝑁 𝑣1 ∩𝑁 𝑣2 |

|𝑁 𝑣1 ∪𝑁 𝑣2 |

▪ Example:
𝑁 𝐴 ∩𝑁 𝐵

𝑁 𝐴 ∪𝑁 𝐵
=

{𝐶}

{𝐶,𝐷}
=

1

2

 Adamic-Adar index:
σ𝑢∈𝑁 𝑣1 ∩𝑁 𝑣2

1

log(𝑘𝑢)

▪ Example:
1

log(𝑘𝐶)
=

1

log 4

9/27/2021 39Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

F
𝑁𝐴

𝑁𝐵

 Limitation of local neighborhood features:

▪ Metric is always zero if the two nodes do not have
any neighbors in common.

▪ However, the two nodes may still potentially be
connected in the future.

 Global neighborhood overlap metrics resolve
the limitation by considering the entire graph.

9/27/2021 40Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

F
𝑁𝐴

𝑁𝐸

𝑁𝐴 ∩𝑁𝐸 = 𝜙
|𝑁𝐴 ∩ 𝑁𝐸 | = 0

 Katz index: count the number of walks of all
lengths between a given pair of nodes.

 Q: How to compute #walks between two
nodes?

 Use powers of the graph adjacency matrix!

9/27/2021 41Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Computing #walks between two nodes

▪ Recall: 𝑨𝑢𝑣 = 1 if 𝑢 ∈ 𝑁(𝑣)

▪ Let 𝑷𝒖𝒗
(𝑲)

= #walks of length 𝑲 between 𝒖 and 𝒗

▪ We will show 𝑷(𝑲) = 𝑨𝒌

▪ 𝑷𝒖𝒗
(𝟏)

= #walks of length 1 (direct neighborhood)
between 𝑢 and 𝑣 = 𝑨𝒖𝒗

9/27/2021 42Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1

4

3

2

𝑷𝟏𝟐
(𝟏)

= 𝑨𝟏𝟐

 How to compute ?

▪ Step 1: Compute #walks of length 1 between each
of 𝒖’s neighbor and 𝒗

▪ Step 2: Sum up these #walks across u’s neighbors

▪ 𝑷𝒖𝒗
(𝟐)

= σ𝒊𝑨𝒖𝒊 ∗ 𝑷𝒊𝒗
(𝟏)

= σ𝒊𝑨𝒖𝒊 ∗ 𝑨𝒊𝒗 = 𝑨𝒖𝒗
𝟐

9/27/2021 43Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Node 1’s neighbors
#walks of length 1 between

Node 1’s neighbors and Node 2 𝑷𝟏𝟐
(𝟐)

= 𝑨12
2

Power of

adjacency

 Katz index: count the number of walks of all
lengths between a pair of nodes.

 How to compute #walks between two nodes?
 Use adjacency matrix powers!

▪ 𝑨𝑢𝑣 specifies #walks of length 1 (direct
neighborhood) between 𝑢 and 𝑣.

▪ 𝑨𝑢𝑣
𝟐 specifies #walks of length 2 (neighbor of

neighbor) between 𝑢 and 𝑣.

▪ And, 𝑨𝑢𝑣
𝒍 specifies #walks of length 𝒍.

9/27/2021 44Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Katz index between 𝑣1 and 𝑣2 is calculated as

 Katz index matrix is computed in closed-form:

9/27/2021 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

0 < 𝛽 < 1: discount factor

= σ𝑖=0
∞ 𝛽𝑖𝑨𝑖

by geometric series of matrices

#walks of length 𝑙
between 𝑣1 and 𝑣2

Sum over all walk lengths

 Distance-based features:

▪ Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

 Local neighborhood overlap:

▪ Captures how many neighboring nodes are shared
by two nodes.

▪ Becomes zero when no neighbor nodes are shared.

 Global neighborhood overlap:

▪ Uses global graph structure to score two nodes.

▪ Katz index counts #walks of all lengths between two
nodes.

9/27/2021 46Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs

Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Goal: We want features that characterize the
structure of an entire graph.

 For example:

9/27/2021 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

 Kernel methods are widely-used for traditional
ML for graph-level prediction.

 Idea: Design kernels instead of feature vectors.
 A quick introduction to Kernels:

▪ Kernel 𝐾 𝐺,𝐺 ′ ∈ ℝ measures similarity b/w data

▪ Kernel matrix 𝑲 = 𝐾 𝐺,𝐺 ′
𝐺,𝐺′

must always be

positive semidefinite (i.e., has positive eigenvalues)

▪ There exists a feature representation 𝜙(∙) such that
𝐾 𝐺, 𝐺′ = 𝜙 G T𝜙 𝐺 ′

▪ Once the kernel is defined, off-the-shelf ML model,
such as kernel SVM, can be used to make predictions.

9/27/2021 49Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Graph Kernels: Measure similarity between
two graphs:

▪ Graphlet Kernel [1]

▪ Weisfeiler-Lehman Kernel [2]

▪ Other kernels are also proposed in the literature
(beyond the scope of this lecture)

▪ Random-walk kernel

▪ Shortest-path graph kernel

▪ And many more…

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.

[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

 Goal: Design graph feature vector 𝜙 𝐺
 Key idea: Bag-of-Words (BoW) for a graph

▪ Recall: BoW simply uses the word counts as
features for documents (no ordering considered).

▪ Naïve extension to a graph: Regard nodes as words.

▪ Since both graphs have 4 red nodes, we get the
same feature vector for two different graphs…

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

𝜙() = 𝜙

What if we use Bag of node degrees?
Deg1: Deg2: Deg3:

 Both Graphlet Kernel and Weisfeiler-Lehman
(WL) Kernel use Bag-of-* representation of
graph, where * is more sophisticated than
node degrees!

9/27/2021 52Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝜙() = count() = [1, 2, 1]

𝜙() = count() = [0, 2, 2]

Obtains different features

for different graphs!

 Key idea: Count the number of different
graphlets in a graph.

▪ Note: Definition of graphlets here is slightly
different from node-level features.

▪ The two differences are:
▪ Nodes in graphlets here do not need to be connected (allows for

isolated nodes)

▪ The graphlets here are not rooted.

▪ Examples in the next slide illustrate this.

9/27/2021 53Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Let 𝓖𝒌 = (𝒈𝟏,𝒈𝟐, … , 𝒈𝒏𝒌) be a list of graphlets

of size 𝒌.

▪ For 𝑘 = 3 , there are 4 graphlets.

▪ For 𝑘 = 4 , there are 11 graphlets.

9/27/2021 54Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑔1 𝑔2 𝑔3 𝑔4

Shervashidze et al., AISTATS 2011

 Given graph 𝐺, and a graphlet list 𝒢𝑘 =
(𝑔1, 𝑔2,… , 𝑔𝑛𝑘), define the graphlet count

vector 𝒇𝐺 ∈ ℝ𝑛𝑘 as

(𝒇𝐺)𝑖= #(𝑔𝑖 ⊆ 𝐺) for 𝑖 = 1,2,… , 𝑛𝑘.

9/27/2021 55Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Example for 𝑘 = 3.

9/27/2021 56Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑔1 𝑔2 𝑔3 𝑔4

𝐺

𝒇𝐺 = (1, 3, 6, 0)T

 Given two graphs, 𝐺 and 𝐺′, graphlet kernel is
computed as

𝐾 𝐺, 𝐺′ = 𝒇𝐺
T𝒇𝐺′

 Problem: if 𝐺 and 𝐺′ have different sizes, that
will greatly skew the value.

 Solution: normalize each feature vector

9/27/2021 57Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝐾 𝐺, 𝐺′ = 𝒉𝐺
T
𝒉𝐺′

Limitations: Counting graphlets is expensive!
 Counting size-𝑘 graphlets for a graph with size 𝑛

by enumeration takes 𝑛𝑘.
 This is unavoidable in the worst-case since

subgraph isomorphism test (judging whether a
graph is a subgraph of another graph) is NP-hard.

 If a graph’s node degree is bounded by 𝑑, an
𝑂(𝑛𝑑𝑘−1) algorithm exists to count all the
graphlets of size 𝑘.

Can we design a more efficient graph kernel?
9/27/2021 58Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Goal: Design an efficient graph feature
descriptor 𝜙 𝐺

 Idea: Use neighborhood structure to
iteratively enrich node vocabulary.

▪ Generalized version of Bag of node degrees since
node degrees are one-hop neighborhood
information.

 Algorithm to achieve this:

Color refinement

9/27/2021 59Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Given: A graph 𝐺 with a set of nodes 𝑉.

▪ Assign an initial color 𝑐 0 𝑣 to each node 𝑣.

▪ Iteratively refine node colors by

𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢
𝑢∈𝑁 𝑣

,

where HASH maps different inputs to different colors.

▪ After 𝐾 steps of color refinement, 𝑐 𝐾 𝑣
summarizes the structure of 𝐾-hop neighborhood

9/27/2021 60Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Example of color refinement given two graphs

▪ Assign initial colors

▪ Aggregate neighboring colors

9/27/2021 61Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

1 1

1

1 1

1

1 1

1

1 1

1

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

𝐺1
𝐺2

Example of color refinement given two graphs

▪ Aggregated colors

▪ Hash aggregated colors

9/27/2021 62Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4 3

5

2 2

4

3 4

5

2 2

4

Hash table

1,1

1,11

1,111

1,1111

-->

-->

-->

-->

2

3

4

5

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Example of color refinement given two graphs

▪ Aggregated colors

▪ Hash aggregated colors

9/27/2021 63Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

4,345 3,44

5,2244

2,5 2,5

4,345

3,45 4,345

5,2344

2,5 2,4

4,245

4 3

5

2 2

4

3 4

5

2 2

4

Example of color refinement given two graphs

▪ Aggregated colors

▪ Hash aggregated colors

9/27/2021 64Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

11 8

12

7 7

11

9 11

13

7 6

10

Hash table

2,4

2,5

3,44

3,45

4,245

4,345

5,2244

5,2344

-->

-->

-->

-->

-->

-->

-->

-->

6

7

8

9

10

11

12

13

4,345 3,44

5,2244

2,5 2,5

4,345

3,45 4,345

5,2344

2,5 2,4

4,245

After color refinement, WL kernel counts number
of nodes with a given color.

9/27/2021 65Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

= [6,2,1,2,1,0,2,1,0, 0, 0, 2, 1]

Counts

Colors

1,2,3,4,5,6,7,8,9,10,11,12,13

= [6,2,1,2,1,1,1,0,1, 1, 1, 0, 1]

1,2,3,4,5,6,7,8,9,10,11,12,13

The WL kernel value is computed by the inner
product of the color count vectors:

K(,)

=

= 49

9/27/2021 66Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 WL kernel is computationally efficient
▪ The time complexity for color refinement at each step is

linear in #(edges), since it involves aggregating neighboring
colors.

 When computing a kernel value, only colors
appeared in the two graphs need to be tracked.

▪ Thus, #(colors) is at most the total number of nodes.

 Counting colors takes linear-time w.r.t. #(nodes).

 In total, time complexity is linear in #(edges).
9/27/2021 67Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

 Graphlet Kernel
▪ Graph is represented as Bag-of-graphlets

▪ Computationally expensive
 Weisfeiler-Lehman Kernel

▪ Apply 𝐾-step color refinement algorithm to enrich
node colors
▪ Different colors capture different 𝐾-hop neighborhood

structures

▪ Graph is represented as Bag-of-colors

▪ Computationally efficient

▪ Closely related to Graph Neural Networks (as we
will see!)

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

 Traditional ML Pipeline

▪ Hand-crafted feature + ML model

 Hand-crafted features for graph data

▪ Node-level:

▪ Node degree, centrality, clustering coefficient, graphlets

▪ Link-level:

▪ Distance-based feature

▪ local/global neighborhood overlap

▪ Graph-level:

▪ Graphlet kernel, WL kernel

9/27/2021 69Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

