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Traditional machine learning relies on pre-defined features 

from isolated data points, while graph machine learning 

leverages both features and relations between entities to 

capture complex dependencies in networked data

Graph Machine Learning
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CNN

RNN

Modern deep learning toolbox is designed

for simple sequences & grids

Why Graph Machine Learning?
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Not everything

can be represented as

a sequence or a grid
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Networks are complex



Why Is It Hard?
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?
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Deep Learning in Graphs
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Key point: “Representation Learning”

(Supervised) Machine Learning Lifecycle: This feature, that feature. 

Every single time!

Degree, PageRank, 

graphlets, …
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To learn a low-dimensional dense vector that encodes node 

structures and attributes, enables efficient feature learning for 

graph-structured data

Deep graph representation learning



Example
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OutputInput

 Zachary’s Karate Club Network:
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Diverse level of tasks
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Node features

B Graph features
Link features

A

∈ ℝ𝐷

 Design features for nodes/links/graphs
 Obtain features for all training data

∈ ℝ𝐷

∈ ℝ𝐷

Traditional ML Pipeline
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Machine Learning with Networks

 Node classification
 Predict a type of a given node (categorizing users/items)

 Link prediction
 Predict whether two nodes are linked (knowledge graph 

completion, Friend recommendation)

 Community detection
 Identify densely linked clusters of nodes

 Network similarity
 How similar are two (sub)networks

 Graph Classification
 Categorize different graphs(Molecule property prediction)
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Example: Academic Graph Mining

• Input:

– an academic graph (papers, citation links, …)

• Applications:

– recommendation, tagging, disambiguation, …
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• How to represent a node in a graph to help downstream 

tasks?

• Node Embedding!

Question

∈ ℝ𝐷
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Examples of

Node-Level Tasks



Example: Node Classification

? ?

?
?

?

Machine 

Learning
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Example: Node Classification
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Classifying the 

function of 

proteins in the 

interactome!
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Example of “Node-level” ML
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ex) Protein Folding

• protein= sequence of amino acid

• 3d structure

• interact with each other

•Goal: predict 3D structure based on amino acid sequence

•key idea of AlphaFold: “spatial graph”

• (1) node: amino acids

• (2) edges: proximity between nodes

Example of “Node-level” ML
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Example of “Node-level” ML
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Examples of

Edge-Level Tasks



Example: Link Prediction

Machine 

Learning

23
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Example: Link Prediction
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Content 

recommendation 

is link prediction! ?
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ex) Recommender Systems

•Formulation

• (1) node: user & items

• (2) edge: user & item interaction

• Goal: “Recommend item to users”

• (predict whether 2 nodes are related)

Example of “Edge-level” ML
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Example of “Edge-level” ML
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ex) Drug Side Effects

Background: many patients & many drugs

•Goal: predict adverse side effects of “pair of drugs”

• Formulation

• (1) node: drugs & proteins

• (2) edges: interactions

• drug-protein interaction

• protein-protein interaction

• drug-drug interaction

Example of “Edge-level” ML
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Example of “Edge-level” ML
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Example of

A SubGraph Task
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Google Maps: traffic prediction 

with GNN

Example of “Subgraph-level” ML



Predicting Time of Arrival with GNNS

Used in Google Maps

Traffic Prediction with GNNs
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Google Maps : traffic prediction with GNN
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Examples of

Graph-Level Tasks
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Example of “Graph-level” ML
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ex) Drug Discovery Permalink

•Antibiotics = small molecular graphs

•Formulation

• (1) node: atoms

• (2) edges: chemical bonds

•(Q) Which molecules should be prioritized?

•ex) graph classification model

• predict promising molecules among candidates

Example of “Graph-level” ML

https://seunghan96.github.io/gnn/gnn1/#ex-drug-discovery
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Generate novel molecules ( new structure )

• with “high drug likeness”

• with “desirable properties”

Example of “Graph-level” ML



Shallow embedding

• Matrix factorization-based approaches

• Random Walk-Based (Deepwalk- Node2vec)

Deep embedding

• Graph Neural Networks (GCN- GAT- GraphSAGE)

• Autoencoder-Based Methods

• Temporal/Dynamic Graph Embeddings (TGAT)

• Heterogeneous Graph Embeddings (HAN, Metapath2vec)

• Graph Transformers (Graphormer, GTN)
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Graph Embedding Methods
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Shallow Embedding



Need to define!

in the original network

Similarity of the embedding

Embedding nodes

Goal: similarity(𝑢, 𝑣) ≈ 𝑧𝑢
𝑇 ∙ 𝑧𝑣

39

∈ ℝ𝐷



Learning node embeddings
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1. Define an encoder ENC that maps nodes to low 

dimensional spaces

2. Define a node similarity function (i.e., a measure of 

similarity in the original network).

3. Decoder 𝐃𝐄𝐂 maps from embeddings to the similarity score

4. Optimize the parameters of the encoder so that we 

minimize a loss function L that looks (roughly) like: 

𝐿 =  

𝑢,𝑣 ∈ 𝑉

(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) − 𝑧𝑢
𝑇 ∙ 𝑧𝑣)

2



Dimension/size of

embeddings

one column per node

embedding 
matrix

embedding vector for a
specific node

𝐙 =

Each node is assigned a single d-dimensional vector

Learn 𝑉 × 𝑑 embedding matrix 𝑍: each column i is the 

embedding 𝑧𝑖 of node i

Shallow embeddings(*)

(*) As opposed to deep learning in graphs (GNN embeddings)
41



Shallow embeddings
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Z
𝑧𝑣

𝐸𝑁𝐶 𝑣 = 𝑍𝑣 = 𝑍 𝐼𝑣

𝑣
One-hot or 

indicator vector, all 

0s but position 𝑣

𝐼𝑣

Encoder is just an embedding lookup

0

0

1

0

𝑁 × 1𝑑 × 𝑁

𝑣



Encoder + Decoder Framework

 Shallow encoder: Embedding lookup

 Parameters to optimize: 𝐙which contains node 
embeddings for all nodes 𝑢 ∈ 𝑉

 We will cover deep encoders in the GNNs

 Decoder: based on node similarity.

 Objective: maximize 𝑧𝑢
𝑇 ∙ 𝑧𝑣 for node pairs (𝑢, 𝑣)

that are similar

Framework Summary
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• Key choice of methods is how they define node 
similarity.

• Should two nodes have a similar embedding if 
they…
 are linked?

 share neighbors?

 have similar “structural roles”?

How to define node similarity

44



Adjacency Matrix

 Simplest node similarity: Nodes 𝑢, 𝑣 are similar 

if they are connected by an edge

 This means: z𝑣
Τz𝑢 = 𝐴𝑢,𝑣

which is the (𝑢, 𝑣) entry of the graph adjacency 

matrix 𝐴

 Therefore, 𝑍𝑇𝑍 = 𝐴

1

4

3

2

×

𝒁𝑇 𝒁

𝐳𝑢 𝐳𝑣






















0111

1000

1001

1010

A
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z2
Τz4 ≈ 𝟏



Adjacency-based approach

 The embedding dimension 𝑑 (number of rows in 𝒁) 

is much smaller than number of nodes 𝑛. (𝑑 << 𝑛)

 Inner product decoder with node similarity defined 

by edge connectivity is equivalent to matrix 

factorization of 𝐴.

 Exact factorization 𝐴 = 𝒁𝑻𝒁 is generally not possible

 Matrix decomposition (for example, SVD 

decomposition)
1. Scalability issues

2. Produced matrices that are very dense
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Adjacency-based approach

 However, we can learn 𝒁 approximately

 Objective:min
𝐙

∥ A − 𝒁𝑇𝒁 ∥2

 We optimize 𝒁 such that it minimizes the L2 norm 

(Frobenius norm) of 𝐀 − 𝒁𝑻𝒁

 We used softmax instead of L2. But the goal to 

approximate 𝐀 with 𝒁𝑇𝒁 is the same.

How: stochastic gradient descent

47
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𝐿 =  𝑢,𝑣 ∈ 𝑉 × 𝑉 ||𝐴𝑢,𝑣 - 𝑍𝑢
𝑇 ∙ 𝑍𝑣 ||

2

sum over all 

node pairs 

The loss that what we want to minimize

(possibly weighted) adjacency 

matrix for the graph

embedding 

similarity

Adjacency-based approach



RANDOM -WALK BASED 

EMBEDDINGS

49
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Node Similarity Measure
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Words = Nodes

Sentences = Paths, Random walks

How?

Random Walk Strategy
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Random Walk Strategy

To generate node representations by simulating random walks 

on a graph, capturing structural and relational patterns in a low-

dimensional space.



1

4

3

2

5
6

7

10
9

8

12

Given a graph and a starting point, we select
a neighbor of it at random, and move to this 
neighbor; then we select a neighbor of this
point at random, and move to it, etc.

The (random) sequence of points visited
this way is a random walk on the graph.

Step 1
Step 2

Step 3 Step 4

Step 5

Random Walk

11
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Random-walk embeddings
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probability that i and j
co-occur on a random 

walk over the network
𝑧𝑖 ∙ 𝑧𝑗 ≈



Random-walk Embeddings

55

1. Estimate probability of 

visiting node 𝑣 on a 

random walk starting 

from node 𝑢 using some 

random walk strategy R.

2. Optimize embeddings to 

encode these random 

walk statistics. 



Why Random Walks?

56

1. Expressivity: Flexible stochastic definition of 

node similarity that incorporates both local and 

higher-order neighborhood information. Idea: if

random walk starting from node 𝑢 visits 𝑣 with

high probability, 𝑢 and 𝑣 are similar (high-order

multi-hop information)

2. Efficiency: Do not need to consider all node 

pairs when training; only need to consider pairs 

that co-occur on random walks.



Unsupervised Feature Learning

 Intuition: Find embedding of nodes in 

𝑑-dimensional space that preserves similarity

 Idea: Learn node embedding such that nearby

nodes are close together in the network

 Given a node 𝑢, how do we define nearby 

nodes?

 𝑁𝑅 𝑢 : neighbourhood of 𝑢 obtained by some 

random walk strategy 𝑅

57



Random Walk Optimization

1. Run short fixed-length random walks starting from 

each node 𝑢 in the graph using some random walk 

strategy R.

2. For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset* of nodes 

visited on random walks starting from 𝑢.

3. Optimize embeddings according to: Given node 𝑢, 

predict its neighbors 𝑁R(𝑢).

arg max
𝑧

 

𝑢 ∈𝑉

log P(𝑁R(𝑢)| 𝐳𝑢)

*𝑁𝑅(𝑢) can have repeat elements since nodes can be visited multiple times on random 

walks

Maximum 

likelihood 

objective
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Random Walk Optimization

Intuition: Optimize embeddings 𝑧𝑢 to minimize the negative log-
likelihood of random walk neighborhoods 𝑁(𝑢).

Parameterize 𝑃(𝑣|z𝑢) using softmax:

Why softmax?

We want node 𝑣 to be most similar 

to node 𝑢 (out of all nodes 𝑛).

Intuition:  𝑖 exp 𝑥𝑖 ≈ max
𝑖

exp(𝑥𝑖)
𝑃 𝑣 𝐳𝑢 =

exp(𝐳𝑢
T𝐳𝑣)

 𝑛∈𝑉 exp(𝐳𝑢
T𝐳𝑛)

argmin
𝑧

ℒ =  

𝑢∈𝑉

 

𝑣∈𝑁𝑅(𝑢)

−log(𝑃(𝑣|𝐳𝑢))

Equivalently,
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Random Walk Optimization

Putting it all together:

sum over all 
nodes 𝑢

sum over nodes 𝑣
seen on random 

walks starting from 𝑢

predicted probability of 𝑢
and 𝑣 co-occuring on 

random walk

Optimizing random walk embeddings = Finding embeddings z𝑢 that minimize Loss

ℒ =  

𝑢∈𝑉

 

𝑣∈𝑁𝑅(𝑢)

− log(
exp(𝐳𝑢

T𝐳𝑣)

 𝑛∈𝑉 exp(𝐳𝑢
T𝐳𝑛)

)
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 DeepWalk just runs fixed-length, unbiased 

random walks starting from each node 

 Node2vec: biased random walks that can 

trade-off between local and global views of the 

network

How should we randomly walk?
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Short random walks =  sentences

Short truncated random walks are sentences in 

an artificial language

DeepWalk
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DeepWalk



Node2vec: Biased Walks

Idea: use flexible, biased random walks that can 

trade off between local and global views of the 

network (Grover and Leskovec, 2016).  
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node2vec: Scalable Feature Learning for Networks
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ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf


Node2vec: Biased Walks

Two classic strategies to define a neighborhood 

𝑁𝑅 𝑢 of a given node 𝑢:
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𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view

Global macroscopic view
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and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
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computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
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purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
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Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
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networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.
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Biased 2nd Order Random Walks
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𝑡

x1

𝒗

x2

Closer to 𝒕

Farther from 𝒕

Walker from t, traversed (𝑡, 𝑣) and is now in 𝑣, where 

to go next?

How much far away from 𝑡? Only three possible choices:

 Farther distance (distance =2)

 Same distance (distance = 1)

 Back to t (distance = 0)

Same distance to 𝒕



Interpolating BFS and DFS

Biased random walk 𝑅 that given a node 𝑢 generates 

neighborhood 𝑁𝑅 𝑢

 Two parameters:
 Return parameter 𝑝:

 Return to the previous node

 In-out parameter 𝑞:

 Moving outwards (DFS) vs. inwards (BFS)

 Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

 Specify how a single step of biased random walk 

is performed

 Random walk is then just a sequence of these steps.
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One step of the biased random walk
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Same distance to 𝒕

𝑡

x1

𝑣

x2

Closer to 𝒕

Farther from 𝒕

At 𝑣 from 𝑡, where to 

go next?

1

1/𝑞
1/𝑝

 1 to node with same distance

 1/q node further apart

 1/p back to t

(unnormalized probabilities)

BFS-like walk: Low value of 𝑝
DFS-like walk: Low value of 𝑞

Define the random walk by specifying 

the walk transition probabilities on 

edges adjacent to the current node 𝑣:



One step of the biased random walk
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𝑣 →
𝑡
s2

s3

s4

1/𝑝
1
1/𝑞
1/𝑞

Unnormalized

transition prob.

segmented based 

on distance from 𝑡

1

1/𝑞

1/𝑝t

s2

𝑣

s3

𝑢 s4

1/𝑞
Target Prob. Dist. (𝑺𝒊, 𝒕)

0

1

2

2

At 𝑣 from 𝑆1

𝑁𝑅(𝑣) are the nodes visited by the biased walk
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node2vec tend to fail in 

structural equivalence tasks.

Node2vec limitation



GRAPH NEURAL NEWTORKS
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Idea: Convolutional Networks

CNN on an image:

72

Can we generalize convolutions beyond simple lattices?
Leverage node features/attributes (e.g., text, images)



End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

What if our data looks like this?

Why is it hard?

73

vs.

Networks Images

Text

Graphs are far more complex!

 No fixed notion of (spatial) locality or sliding window on the graph
 No fixed node ordering or reference point

 Often dynamic and have multimodal features

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

Graphs look like this:

arbitrary size and complex 

topological structure



A Naïve Approach

 Join adjacency matrix and features

 Feed them into a deep neural net:

 Issues with this idea:

 Issues with this idea:

 𝑂(|𝑉|) parameters

 Not applicable to graphs of different sizes

 Sensitive to node ordering
74

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]



Permutation Invariance

 Graph does not have a canonical order of the nodes!

 We can have many different order plans.
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A
C

B

E
F

D

A

B

C
D

E

F

Node features 𝑋1 Adjacency matrix 𝐴1

A
B
C
D
E
F

A B C D E FOrder plan 1



Permutation Invariance

 Graph does not have a canonical order of the nodes!

 We can have many different order plans.
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E
D

F

B
A

C

A

B

C
D

E

F

Node features 𝑋2 Adjacency matrix 𝐴2

A
B
C
D
E
F

A B C D E FOrder plan 2
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Graph and node representations 
should be the same for Order plan 1

and Order plan 2

Permutation Invariance



Invariance and Equivariance

 Permutation-invariant

𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

 Permutation-equivariant

𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

78

Permute the input, the 

output stays the same.

Permute the input, output also 

permutes accordingly.



Graph Neural Network Overview

Are other neural network architectures, e.g., 

MLPs, permutation invariant / equivariant?

 No

79

Switching the order of the input 
leads to different outputs!



Graph Neural Network Overview

Are other neural network architectures, e.g., 

MLPs, permutation invariant / equivariant?

 No.

80

This explains why the naïve MLP

approach fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]



Graph Neural Network Overview

 Graph neural networks consist of multiple 

permutation equivariant/invariant functions.

81

[Bronstein, ICLR 2021 



Graph Convolutional Networks

Idea: The neighborhood of a node defines a 

computation graph

82

Determine node 
computation graph

Propagate and
transform information

𝑖

Learn how to propagate information across 

the graph to compute node features



Idea: Aggregate Neighbors

Key idea: Generate node embeddings based 

on local network neighborhoods 

83



Idea: Aggregate Neighbors

 Intuition: Nodes aggregate information from 

their neighbors using neural networks

84

Neural networks



Idea: Aggregate Neighbors

 Intuition: Network neighborhood defines a 

computation graph

85

Every node defines a computation 
graph based on its neighborhood!



Deep Model: Many Layers

 Model can be of arbitrary depth:

 Nodes have embeddings at each layer

 Layer-0 embedding of node 𝑣 is its input feature, 𝑥𝑣
 Layer-𝑘 embedding gets information from nodes 

that are 𝑘 hops away

86

Layer-2

Layer-1
Layer-0



Neighborhood Aggregation 

 Neighborhood aggregation: Key distinctions are 

in how different approaches aggregate 

information across the layers

87

?

?

?

?

What is in the box?



Neighborhood Aggregation

 Basic approach: Average information from 

neighbors and apply a neural network

88

(1) average messages from 
neighbors 

(2) apply neural network



The Math: Deep Encoder

 Basic approach: Average neighbor messages 

and apply a neural network

89

Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings 
are equal to node features

Embedding after K
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
𝑣 at layer 𝑘

h𝑣
0 = x𝑣

z𝑣 = h𝑣
(𝐾)

h𝑣
(𝑘+1)

= 𝜎(W𝑘  

𝑢∈N(𝑣)

h𝑢
(𝑘)

N(𝑣)
+ B𝑘h𝑣

(𝑘)
), ∀𝑘 ∈ {0, … , 𝐾 − 1}

Notice summation is a permutation 

invariant pooling/aggregation.



Model Parameters

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ𝑣
𝑘: the hidden representation of node 𝑣 at layer 𝑘

 𝑊𝑘: weight matrix for neighborhood aggregation

 𝐵𝑘: weight matrix for transforming hidden vector of self
90

Trainable weight matrices 
(i.e., what we learn) 

Final node embedding

h𝑣
(0)

= x𝑣

z𝑣 = h𝑣
(𝐾)

h𝑣
(𝑘+1)

= 𝜎(W𝑘  

𝑢∈N(𝑣)

h𝑢
(𝑘)

N(𝑣)
+ B𝑘h𝑣

(𝑘)
), ∀𝑘 ∈ {0. . 𝐾 − 1}

weight matrices 

are shared 



GCN: Invariance and Equivariance

What are the invariance and equivariance

properties for a GCN?

 Given a node, the GCN that computes its 

embedding is permutation invariant
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A
C

B

E
F

D
Target Node

D A

D

B

C

Shared NN weights

Average of neighbor’s previous layer 
embeddings - Permutation invariant 



𝒛𝐴

Training the Model

How do we train the GCN to 
generate embeddings?

Need to define a loss function on the embeddings.
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How to Train A GNN

 Node embedding 𝒛𝑣 is a function of input graph

 Supervised setting: We want to minimize loss ℒ:
min
Θ

ℒ(𝒚, 𝑓Θ 𝒛𝑣 )

 𝒚: node label

 ℒ could be L2 if 𝒚 is real number, or cross entropy if 𝒚 is 
categorical (loss in Maximum Likelihood Estimation)
 Cross entropy loss (CE):

 CE 𝒚, 𝑓 𝒙 = − 𝑖=1
𝐶 (𝑦𝑖 log 𝑓Θ(𝑥)𝑖)

 𝑦𝑖 and 𝑓Θ(𝑥)𝑖 are the actual and predicted values of the 𝑖-th class

 Intuition: the lower the loss, the closer the prediction is to one-hot 

 Unsupervised setting:
 No node label available

 Use the graph structure as the supervision!
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Unsupervised Training

One possible idea: “Similar” nodes have similar 

embeddings:

𝐦𝐢𝐧𝚯 ℒ =  

𝑧𝑢,𝑧𝑣

CE(𝑦𝑢,𝑣 , DEC 𝑧𝑢, 𝑧𝑣 )

 where 𝑦𝑢,𝑣 = 1 when node 𝑢 and 𝑣 are similar 

 𝑧𝑢 = 𝑓Θ 𝑢 and DEC(⋅,⋅) is the dot product

Node similarity can be anything from embeddings, 

e.g., a loss based on:

 Random walks (node2vec, DeepWalk, struc2vec)

 Matrix factorization
94



Supervised Training

Directly train the model for a supervised task 

(e.g., node classification)

95

Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network



Supervised Training

Directly train the model for a supervised task 

(e.g., node classification)

Use cross entropy loss

96

Encoder output: 
node embedding

Classification 
weights

Node class 
labelSafe or toxic drug?

ℒ = − 

𝑣∈𝑉

𝑦𝑣log(𝜎(z𝑣
T𝜃)) + 1 − 𝑦𝑣 log(1 − 𝜎 z𝑣

T𝜃 )



Model Design: Overview

97

(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

𝒛𝐴



Model Design: Overview

98

(3) Train on a set of nodes, i.e., 
a batch of compute graphs



Model Design: Overview

99

(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!



Inductive Capability

 The same aggregation parameters are 

shared for all nodes:

 The number of model parameters is sublinear in 

|𝑉| and we can generalize to unseen nodes! 

100

𝑊𝑘 𝐵𝑘



Inductive Capability: New Graphs

101

Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z𝑢



Inductive Capability: New Nodes

102

Train with snapshot New node arrives
Generate embedding 

for new node

 Many application settings constantly encounter 
previously unseen nodes:

 E.g., Reddit, YouTube, Google Scholar

 Need to generate new embeddings “on the fly”

z𝑢



Summary so far

 How to build CNNs for graphs use local 

neighborhood of a node

 Next: more details using a general GNN 

framework

103
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(2) Aggregation

(1) Message

GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer connectivity

(5) Learning objective

A General GNN Framework (5 main issues)
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General Framework

• A single GNN layer: Aggregation and Message

• Layer connectivity: Stacking

• Graph manipulations(augmentation)

• Learning objectives/metrics

5 main issues

1 2

3

4

5



A SINGLE GNN LAYER
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A GNN Layer

107

(2) Aggregation

(1) Message

GNN Layer 2

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …



A Single GNN Layer

 Idea of a GNN Layer:

 Compress a set of vectors into a single vector

 Two-step process:

 (1) Message

 (2) Aggregation

108

Input node embedding 𝐡𝑣
𝑙−1

, 𝐡𝑢∈𝑁(𝑣)
𝑙−1

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡𝑣
𝑙

(2) Aggregation

(1) Message

Node 𝒗



Message Computation

(1) Message computation

 Message function: 

 Intuition: Each node will create a message, which 

will be sent to other nodes

 Example: A Linear layer 𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

 Multiply node features with weight matrix 𝐖 𝑙

109

(2) Aggregation

(1) Message

Node 𝒗

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1



(2) Aggregation
 Intuition: Node 𝑣 will aggregate the messages from 

its neighbors 𝑢:

 Example: Sum(⋅), Mean ⋅ , or Max(⋅) aggregator

 𝐡𝑣
𝑙
= Sum({𝐦𝑢

𝑙
, 𝑢 ∈ 𝑁(𝑣)})

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙 , 𝑢 ∈ 𝑁 𝑣

Message Aggregation

110

(2) Aggregation

(1) Message

Node 𝒗



Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

 How to write this as Message + Aggregation?

111

𝐡𝑣
(𝑙)

= 𝜎 𝐖 𝑙  

𝑢∈𝑁 𝑣

𝐡𝑢
𝑙−1

𝑁 𝑣

𝐡𝑣
(𝑙)

= 𝜎  

𝑢∈𝑁 𝑣

𝐖 𝑙
𝐡𝑢

𝑙−1

𝑁 𝑣

Aggregation

Message

(2) Aggregation

(1) Message



Classical GNN Layers: GCN (2)

(1) Graph Convolutional Networks (GCN)

 Message: 

 Each Neighbor: 𝐦𝑢
(𝑙)

=
1

𝑁 𝑣
𝐖 𝑙 𝐡𝑢

𝑙−1

 Aggregation:

 Sum over messages from neighbors, then apply 

activation

 𝐡𝑣
𝑙
= 𝜎 Sum 𝐦𝑢

𝑙
, 𝑢 ∈ 𝑁 𝑣

112

Normalized by 
node degree
(In the GCN paper they use a 
slightly different normalization)

𝐡𝑣
(𝑙)

= 𝜎  

𝑢∈𝑁 𝑣

𝐖 𝑙
𝐡𝑢

𝑙−1

𝑁 𝑣

(2) Aggregation

(1) Message

In GCN the input graph is 

assumed to have self-edges 

that are included in the 

summation.
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Classical GNN Layers: GCN

Kipf & 

Welling
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Classical GNN Layers: GraphSAGE

• A general inductive framework that efficiently generate node 

embeddings for previously unseen data.

• Uniformly sample a fixed-size set of neighbors, instead of

• using full neighborhood sets

(SAmple and aggreGatE),



Classical GNN Layers: GraphSAGE

(2) GraphSAGE

 How to write this as Message + Aggregation?

 Message is computed within the AGG ⋅

 Two-stage aggregation

 Stage 1: Aggregate from node neighbors

 Stage 2: Further aggregate over the node itself

115

𝐡𝑣
(𝑙)

= 𝜎 𝐖(𝑙) ∙ CONCAT 𝐡𝑣
𝑙−1

, AGG 𝐡𝑢
𝑙−1

, ∀𝑢 ∈ 𝑁 𝑣

𝐡𝑁(𝑣)
(𝑙)

← AGG 𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝑁 𝑣

𝐡𝑣
(𝑙)

← 𝜎 𝐖(𝑙) ⋅ CONCAT(𝐡𝑣
𝑙−1

, 𝐡𝑁(𝑣)
(𝑙)

)



 Mean: Take a weighted average of neighbors

 Pool: Transform neighbor vectors and apply 
symmetric vector function Mean(⋅) or Max(⋅)

 LSTM: Apply LSTM to reshuffled of neighbors

AGG =  

𝑢∈𝑁(𝑣)

𝐡𝑢
(𝑙−1)

𝑁(𝑣)

GraphSAGE Neighbor Aggregation
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AGG = Mean({MLP(𝐡𝑢
(𝑙−1)

), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝝅 𝑁 𝑣 ])

Message computation

Message computation

Aggregation

Aggregation

Aggregation

applied to a 

random 

permutation



GraphSAGE: L2 Normalization

ℓ2 Normalization: 

 Optional: Apply ℓ2 normalization to 𝐡𝑣
(𝑙)

at every 

layer

 𝐡𝑣
(𝑙)

←
𝐡𝑣
(𝑙)

𝐡𝑣
(𝑙)

2

∀𝑣 ∈ 𝑉 where 𝑢 2 =  𝑖 𝑢𝑖
2 (ℓ2-

norm)

 Without ℓ2 normalization, the embedding vectors have 
different scales (ℓ2-norm) for vectors

 In some cases (not always), normalization of 

embedding results in performance improvement 

117



(3) Graph Attention Networks

 Weighting factor (importance) of the message of node 𝑢 to 
node 𝑣

 In GCN and GraphSAGE:

 𝛼𝑣𝑢 =
1

𝑁 𝑣
defined explicitly based on the structural properties 

of the graph (node degree)

 All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important to node 𝑣

𝐡𝑣
(𝑙)

= 𝜎( 𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖
(𝑙)𝐡𝑢

(𝑙−1)
)

Classical GNN Layers: GAT (1)
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Attention weights



(3) Graph Attention Networks

Not all node’s neighbors are equally important

 Attention is inspired by cognitive attention. 

 The attention 𝜶𝒗𝒖 focuses on the important parts of the 

input data and fades out the rest. 

 Idea: the NN should devote more computing power on that 

small but important part of the data. 

 Which part of the data is more important depends on the 

context and is learned through training.

𝐡𝑣
(𝑙)

= 𝜎( 𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖
(𝑙)𝐡𝑢

(𝑙−1)
)

Classical GNN Layers: GAT (2)
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Attention weights



Graph Attention Networks

Can weighting factors 𝛼𝑣𝑢 be learned?

 Goal: Specify arbitrary importance to 

different neighbors of each node in the graph

 Idea: ﻿Compute embedding 𝒉𝑣
(𝑙)

of each node 

in the graph following an attention strategy:

 ﻿Nodes attend over their neighborhoods’ message

 Implicitly specifying different weights to different 

nodes in a neighborhood

120



Attention Mechanism (1)

Let 𝛼𝑣𝑢 be computed as a byproduct of an 
attention mechanism 𝒂:

 (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖
across pairs of nodes 𝑢, 𝑣 based on their 
messages:

𝑒𝑣𝑢 = 𝑎(𝐖(𝑙)𝐡𝑢
(𝑙−1)

,𝐖(𝑙)𝒉𝑣
(𝑙−1)

)
 𝒆𝒗𝒖 indicates the importance of 𝒖′𝐬 message to 

node 𝒗
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𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

𝑒𝐴𝐵

𝑒𝐴𝐵 = 𝑎(𝐖(𝑙)𝐡𝐴
(𝑙−1)

,𝐖(𝑙)𝐡𝐵
(𝑙−1)

)



Attention Mechanism (2)

 Normalize 𝑒𝑣𝑢 into the final attention weight 
𝜶𝒗𝒖

 Use the softmax function, so that  𝑢∈𝑁 𝑣 𝛼𝑣𝑢 = 1:

𝛼𝑣𝑢 =
exp(𝑒𝑣𝑢)

 𝑘∈𝑁 𝑣 exp(𝑒𝑣𝑘)

 Weighted sum based on the final attention 
weight 𝜶𝒗𝒖:

𝐡𝑣
(𝑙)

= 𝜎( 𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖
(𝑙)𝐡𝑢

(𝑙−1)
)

122

𝛼𝐴𝐵Weighted sum using 𝛼𝐴𝐵, 𝛼𝐴𝐶, 𝛼𝐴𝐷:

𝐡𝐴
(𝑙)

= 𝜎(𝛼𝐴𝐵𝐖
(𝑙)𝐡𝐵

(𝑙−1)
+𝛼𝐴𝐶𝐖

(𝑙)𝐡𝐶
(𝑙−1)

+ 

𝛼𝐴𝐷𝐖
(𝑙)𝐡𝐷

(𝑙−1)
)

𝐡𝐵
(𝑙−1)

𝐡𝐶
(𝑙−1)

𝛼𝐴𝐶

𝛼𝐴𝐷



Attention Mechanism (3)

What is the form of attention mechanism 𝒂?

 The approach is agnostic to the choice of 𝑎

 E.g., use a simple single-layer neural network

 𝑎 have trainable parameters (weights in the Linear layer)

 Parameters of 𝑎 are trained jointly:

 Learn the parameters together with weight matrices (i.e., 

other parameter of the neural net 𝐖(𝑙)) in an end-to-end

fashion
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𝑒𝐴𝐵 = 𝑎 𝐖(𝑙)𝐡𝐴
(𝑙−1)

,𝐖(𝑙)𝐡𝐵
(𝑙−1)

= Linear Concat 𝐖(𝑙)𝐡𝐴
(𝑙−1)

,𝐖(𝑙)𝐡𝐵
(𝑙−1)

𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

Concatenate Linear
𝑒𝐴𝐵



Attention Mechanism (4)

 Multi-head attention: Stabilizes the learning 
process of attention mechanism
 Create multiple attention scores (each replica with 

a different set of parameters):

 0utputs are aggregated:
 By concatenation or summation

 𝐡𝑣
(𝑙)

= AGG(𝐡𝑣
(𝑙)

1 , 𝐡𝑣
(𝑙)

2 , 𝐡𝑣
(𝑙)

3 )
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𝐡𝑣
(𝑙)
[1] = 𝜎( 𝑢∈𝑁 𝑣 𝛼𝑣𝑢

1 𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

𝐡𝑣
(𝑙)
[2] = 𝜎( 𝑢∈𝑁 𝑣 𝛼𝑣𝑢

2 𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

𝐡𝑣
(𝑙)
[3] = 𝜎( 𝑢∈𝑁 𝑣 𝛼𝑣𝑢

3 𝐖(𝑙)𝐡𝑢
(𝑙−1)

)



Benefits of Attention Mechanism

 Key benefit: Allows for (implicitly) specifying different 
importance values (𝜶𝒗𝒖) to different neighbors

 Computationally efficient: 
 Computation of attentional coefficients can be parallelized 

across all edges of the graph

 Aggregation may be parallelized across all nodes

 Storage efficient: 
 Sparse matrix operations do not require more than

𝑂(𝑉 + 𝐸) entries to be stored

 Fixed number of parameters, irrespective of graph size

 Localized:
 Only attends over local network neighborhoods

 Inductive capability: 
 It is a shared edge-wise mechanism

 It does not depend on the global graph structure
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GNN Layer in Practice

 In practice, these classic GNN 

layers are a great starting point

 We can often get better 

performance by considering a 

general GNN layer design 

 Concretely, we can include 

modern deep learning modules 

that proved to be useful in many 

domains

126

A suggested GNN Layer



GNN Layer in Practice

 Many modern deep learning modules can be 
incorporated into a GNN layer

 Attention/Gating:

 Control the importance of a message

 Batch Normalization:

 Stabilize neural network training

 Dropout:

 Prevent overfitting

 More:

 Any other useful deep learning modules
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A suggested GNN Layer



Batch Normalization

 Goal: Stabilize neural networks training

 Idea: Given a batch of inputs (node embeddings)

 Re-center the node embeddings into zero mean 

 Re-scale the variance into unit variance

𝛍𝑗 =
1

𝑁
 

𝑖=1

𝑁

𝐗𝑖,𝑗Input: 𝐗 ∈ ℝ𝑁×𝑑

𝑁 node embeddings

Trainable Parameters: 
𝛄, 𝛃 ∈ ℝ𝐷

Output: 𝐘 ∈ ℝ𝑁×𝑑

Normalized node embeddings

𝛔𝑗
2 =

1

𝑁
 

𝑖=1

𝑁

𝐗𝑖,𝑗 − 𝛍𝑗
2

 X𝑖,𝑗 =
X𝑖,𝑗 − μ𝑗

σ𝑗
2 + 𝜖

Y𝑖,𝑗 = γ𝑗 X𝑖,𝑗 + β𝑗

Step 1: 
Compute the
mean and variance 
over 𝑁 embeddings

Step 2:
Normalize the feature 
using computed mean 
and variance



Dropout

 Goal: Regularize a neural net to prevent overfitting.

 Idea: 

 During training: with some probability 𝑝, randomly set 

neurons to zero (turn off)

 During testing: Use all the neurons for computation
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Removed neurons

Dropout



Dropout for GNNs

 In GNN, Dropout is applied to the 

linear layer in the message function

 A simple message function with 

linear layer: 𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1
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Dropout
𝐡𝑢

𝑙−1
𝐦𝑢

(𝑙)

𝐖 𝑙

(2) Aggregation

(1) Message



Activation (Non-linearity)

 Rectified linear unit (ReLU)

ReLU 𝐱𝑖 = max(𝐱𝑖 , 0)

 Most commonly used

 Sigmoid

𝜎 𝐱𝑖 =
1

1 + 𝑒−𝐱𝑖

 Used only when you want to restrict the range 

of your embeddings

 Parametric ReLU

PReLU 𝐱𝑖 = max 𝐱𝑖 , 0 + 𝑎𝑖min(𝐱𝑖 , 0)

𝑎𝑖 is a trainable parameter

 Empirically performs better than ReLU
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𝑥

𝑦

0

𝑥
𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒−𝑥



GNN Layer in Practice

 Summary: Modern deep 

learning modules can be 

included into a GNN layer for 

better performance

 Designing novel GNN layers is 

still an active research frontier

 You can explore diverse GNN 

designs or try out your own ideas 

in GraphGym
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A GNN Layer

https://github.com/snap-stanford/GraphGym


Summary

 Single GNN layer: 
 Message

 Aggregation

Apply ML modules
 Attention

 Drop out

 Normalization

 Non-linearity
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General Framework

• A single GNN layer: Aggregation and Message

• Layer connectivity: Stacking

• Graph manipulations(augmentation)

• Learning objectives/metrics

5 main issues
1 2

3

4

5



STACKING LAYERS
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Stacking GNN Layers
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GNN Layer 2

GNN Layer 1

(3) Layer 
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, 

NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


Stacking GNN Layers

 How to construct a Graph Neural Network?

 The standard way: Stack GNN layers sequentially

 Input: Initial raw node feature 𝐱𝑣

 Output: Node embeddings  𝐡𝑣
(𝐿)

after 𝐿 GNN layers
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𝐡𝑣
(0)

= 𝐱𝑣

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)



Graph Neural Networks - Depth

B

A C F

E

B

D

C

A

C

B
A

F

E

A

D

Target Node

A

How many 

hops should 

we explore?
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The Over-Smoothing Problem

 The issue of stacking many GNN layers

 GNN suffers from the over-smoothing problem

 The over-smoothing problem: all the node 

embeddings converge to the same value

 This is bad because we want to use node 

embeddings to differentiate nodes

 Why does the over-smoothing problem 

happen?
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Receptive Field of a GNN

 Receptive field: the set of nodes that 

determine the embedding of a node of interest

 In a 𝑲-layer GNN, each node has a receptive 

field of 𝑲-hop neighborhood
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Receptive field 
for 1-layer GNN

Receptive field 
for 2-layer GNN

Receptive field 
for 3-layer GNN



Receptive Field of a GNN

 Receptive field overlap for two nodes

 The shared neighbors quickly grows when 

we increase the number of hops (num of GNN 

layers)

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!
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Receptive Field & Over-smoothing

 We can explain over-smoothing via the 

notion of the receptive field

 We know the embedding of a node is 

determined by its receptive field

 If two nodes have highly-overlapped receptive 

fields, then their embeddings are highly similar

  nodes will have highly-overlapped receptive 

fields  node embeddings will be highly 

similar  suffer from the over-smoothing 

problem

How do we overcome over-smoothing problem?
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Over-smoothing example



Design GNN Layer Connectivity

What do we learn from the over-smoothing problem? 

 Lesson 1: Be cautious when adding GNN layers

 Unlike neural networks in other domains (CNN for image 

classification), adding more GNN layers do not always 

help

 Step 1: Analyze the necessary receptive field to solve 

your problem. E.g., by computing the diameter of the graph

 Step 2: Set number of GNN layers 𝐿 to be a bit more than 

the receptive field we like. Do not set 𝑳 to be 

unnecessarily large!

Question: How to enhance the expressive power of a 

GNN, if the number of GNN layers is small?
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Expressive Power for Shallow GNNs

 How to make a shallow GNN more expressive?

Solution 1: Increase the expressive power within 

each GNN layer

 In our previous examples, each transformation or 

aggregation function only include one linear layer

 We can make aggregation/transformation become a 

deep neural network!
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(2) Aggregation

(1) Transformation

If needed, each box could 
include a 3-layer MLP



Expressive Power for Shallow GNNs

 How to make a shallow GNN more expressive?

Solution 2: Add layers that do not pass messages

 A GNN does not necessarily only contain GNN layers

 E.g., we can add MLP layers (applied to each node) before and 

after GNN layers, as pre-process and post-process layers
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Pre-processing layers: Important when 
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when 
reasoning/transformation over node 
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!



Design GNN Layer Connectivity

 What if my problem still requires many GNN layers?

Lesson 2: Add skip connections in GNNs

 Observation from over-smoothing: Node embeddings in 

earlier GNN layers can sometimes better differentiate nodes

 Solution: We can increase the impact of earlier layers on the 

final node embeddings, by adding shortcuts in GNN
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Idea of skip connections:
Before adding shortcuts: 

𝑭 𝐱
After adding shortcuts: 

𝑭 𝐱 + 𝐱

Duplicate 
into two 
branches

Sum two 
branches

He et al. Deep Residual Learning for Image Recognition, 

CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf


Idea of Skip Connections

 Why do skip connections work?

 Intuition: Skip connections create a mixture of models

 𝑁 skip connections  2𝑁 possible paths

 Each path could have up to 𝑁 modules
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Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

 We automatically get a mixture 
of shallow GNNs and deep GNNs



Example: GCN with Skip Connections

 A standard GCN layer 

 ℎ𝑣
(𝑙)

= 𝜎  𝑢∈𝑁 𝑣 W 𝑙 ℎ𝑢
𝑙−1

𝑁 𝑣

 A GCN layer with skip connection

 ℎ𝑣
(𝑙)

= 𝜎  𝑢∈𝑁 𝑣 W 𝑙 ℎ𝑢
𝑙−1

𝑁 𝑣
+ ℎ𝑣

(𝑙−1)
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This is our 𝐹 x

𝐹(x) + x



Other Options of Skip Connections

 Other options: Directly 

skip to the last layer

 The final layer directly 

aggregates from the all 

the node embeddings in 

the previous layers
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𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)

Input: 𝐡𝑣
(0)

Output: 𝐡𝑣
(𝑓𝑖𝑛𝑎𝑙)
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General Framework

• A single GNN layer: Aggregation and Message

• Layer connectivity: Stacking

• Graph manipulations(augmentation)

• Learning objectives/metrics

5 main issues
1 2

3

4

5



GRAPH MANIPULATIONS
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General GNN Framework
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(4) Graph manipulation

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation



Why Manipulate Graphs

Our assumption so far has been 

 Raw input graph = computational graph

Reasons for breaking this assumption

 Feature level: 

 The input graph lacks features  feature augmentation

 Structure level:

 The graph is too sparse  inefficient message passing

 The graph is too dense  message passing is too costly

 The graph is too large  cannot fit the computational graph 

into a GPU

 It is just unlikely that the input graph happens to be the 

optimal computation graph for embeddings
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Graph Manipulation Approaches

 Graph Feature manipulation

 The input graph lacks features  feature 

augmentation

 Graph Structure manipulation

 The graph is too sparse  Add virtual 

nodes/edges

 The graph is too dense  Sample neighbors 

when doing message passing

 The graph is too large  Sample subgraphs to 

compute embeddings 
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Feature Augmentation on Graphs

Why do we need feature augmentation?

 (1) Input graph does not have node 

features

 This is common when we only have the 

adjacency matrix

Standard approaches:

(a) Assign constant values to nodes
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1

1

1

1

1

1



Feature Augmentation on Graphs

(b) Assign unique IDs to nodes

 These IDs are converted into one-hot vectors
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1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5

One-hot vector for node with ID=5



Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot
Constant node feature One-hot node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a unique ID, 
so node-specific information can 
be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

Low. Cannot generalize to new 
nodes: new nodes introduce new 
IDs, GNN doesn’t know how to 
embed unseen IDs

Computational 
cost

Low. Only 1 dimensional feature High. High dimensional feature, 
cannot apply to large graphs

Use cases Any graph, inductive settings 
(generalize to new nodes)

Small graph, transductive settings 
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1
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Feature Augmentation on Graphs

Why do we need feature augmentation?

(2) Certain structures are hard to learn by GNN

 Example: Cycle count feature

 Can GNN learn the length of a cycle that 𝑣1 resides 

in?

 Unfortunately, no
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𝑣1 𝑣1

𝑣1 resides in a cycle 
with length 3

𝑣1 resides in a cycle with 
length 4



Feature Augmentation on Graphs

Why do we need feature augmentation?

 (2) Certain structures are hard to learn by GNN

 Solution: 

 We can use cycle count as augmented node 

features
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𝑣1 𝑣1

𝑣1 resides in a cycle with 
length 3

𝑣1 resides in a cycle with 
length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start 
from cycle 
with length 0

Augmented node feature for 𝒗𝟏Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural 

Networks, AAAI 2021

Identity-aware Graph Neural Networks


Feature Augmentation on Graphs

Why do we need feature augmentation?

 (2) Certain structures are hard to learn by GNN

 Other commonly used augmented features:

 Clustering coefficient

 PageRank

 Centrality

 …

 Any feature we have introduced when we talked 

about traditional ML approaches  
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Add Virtual Nodes / Edges

Motivation: Augment sparse graphs

 (1) Add virtual edges

 Common approach: Connect 2-hop neighbors 

via virtual edges

 Intuition: Instead of using adjacency matrix 𝐴
for GNN computation, use 𝐴 + 𝐴2
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A

B

C

D

E

Authors
Papers

 Use cases: Bipartite graphs

 Author-to-papers (they authored)

 2-hop virtual edges make an author-author 
collaboration graph



Add Virtual Nodes / Edges

Motivation: Augment sparse graphs

(2) Add virtual nodes

 The virtual node will connect to all the 

nodes in the graph

 Suppose in a sparse graph, two nodes 

have shortest path distance of 10

 After adding the virtual node, all the 

nodes will have a distance of 2 

 Node A – Virtual node – Node B

 Benefits: Greatly improves message 

passing in sparse graphs
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The virtual node



Node Neighborhood Sampling

Our approach so far:
 All the neighbors are used for message passing

 Problem: Dense/large graphs, high-degree 
nodes

New idea: (Randomly) determine a node’s 
neighborhood for message passing
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Hamilton et al. Inductive Representation Learning on Large Graphs, 

NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


Neighborhood Sampling Example

For example, we can randomly choose 2 

neighbors to pass messages

 Only nodes 𝐵 and 𝐷 will pass message to 𝐴
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Neighborhood Sampling Example

Next time when we compute the embeddings, 

we can sample different neighbors

 Only nodes 𝐶 and 𝐷 will pass message to 𝐴
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Neighborhood Sampling Example

In expectation, we can get embeddings similar to the 
case where all the neighbors are used

 Benefits: Greatly reduce computational cost

 And in practice it works great!
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General Framework

• A single GNN layer: Aggregation and Message

• Layer connectivity: Stacking

• Graph manipulations(augmentation)

• Learning objectives/metrics

5 main issues
1 2

3

4

5



LEARNING WITH GNNS

169



A General GNN Framework

170

(5) Learning objective

How do we train a GNN?



GNN Training Pipeline

171

Prediction 
head

Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

So far what we have covered

Output of a GNN: set of node embeddings

{𝐡𝑣
𝐿
, ∀𝑣 ∈ 𝐺}



GNN Prediction Heads

Idea: Different task levels require different 

prediction heads

172

Node-level

prediction

Edge-level 

prediction

Graph-level 

prediction



GNN Training Pipeline (1)
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Prediction 
head

Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks



Prediction Heads: Node-level

Node-level prediction: We can directly make 
prediction using node embeddings

 After GNN computation, we have 𝑑-dim node 

embeddings: {𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺}

 Suppose we want to make 𝑘-way prediction

 Classification: classify among 𝑘 categories

 Regression: regress on 𝑘 targets

  𝒚𝒗 = Headnode(𝐡𝑣
𝐿
) = 𝐖(𝐻)𝐡𝑣

(𝐿)

 𝐖(𝐻) ∈ ℝ𝑘×𝑑 : We map node embeddings from 𝐡𝑣
(𝐿)

∈ ℝ𝑑 to  𝒚𝑣 ∈ ℝ𝑘 so that we can compute the loss
174

Output of the 

classifier



Prediction Heads: Edge-level

Edge-level prediction: Make prediction using pairs of 
node embeddings

 Suppose we want to make 𝑘-way prediction

 𝒚𝒖𝒗 = Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿 )

 What are the options for Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿 )?
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?
𝐡𝑢

𝐿

𝐡𝑣
𝐿



Prediction Heads: Edge-level

 Options for Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿 ):

(1) Concatenation + Linear

 We have seen this in graph attention

  𝒚𝒖𝒗 = Linear(Concat(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
))

 Here Linear(⋅) will map 2𝑑-dimensional 

embeddings (since we concatenated embeddings) 

to 𝑘-dim embeddings (𝑘-way prediction)
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𝐡𝑢
(𝑙−1)

𝐡𝑣
(𝑙−1)

Concatenate Linear
 𝒚𝑢𝑣



Prediction Heads: Edge-level

Options for Headedg𝑒(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
):

(2) Dot product

  𝒚𝒖𝒗 = (𝐡𝑢
𝐿
)𝑇𝐡𝑣

𝐿

 This approach only applies to 𝟏-way prediction (e.g., 
link prediction: predict the existence of an edge)

 Applying to 𝒌-way prediction: 

 Similar to multi-head attention: 𝐖(1), … ,𝐖(𝑘) trainable

 𝒚𝒖𝒗
(𝟏)

= (𝐡𝑢
𝐿
)𝑇𝐖(1)𝐡𝑣

𝐿

…

 𝒚𝒖𝒗
(𝒌)

= (𝐡𝑢
𝐿
)𝑇𝐖(𝑘)𝐡𝑣

𝐿

 𝒚𝑢𝑣 = Concat( 𝒚𝒖𝒗
(𝟏)
, … ,  𝒚𝒖𝒗

(𝒌)
) ∈ ℝ𝑘
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Prediction Heads: Graph-level

Graph-level prediction: Make prediction using all the 
node embeddings in our graph

 Suppose we want to make 𝑘-way prediction

  𝒚𝐺 = Headgraph({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})
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Graph-level prediction

(2) Aggregation

(1) Message

 Headgraph(⋅) is similar to 

AGG(⋅) in a GNN layer!



Prediction Heads: Graph-level

Options for Headgraph({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (1) Global mean pooling

 𝒚𝐺 = Mean({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (2) Global max pooling

 𝒚𝐺 = Max({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (3) Global sum pooling

 𝒚𝐺 = Sum({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 These options work great for small graphs

For large graphs, hierarchical aggregation
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GNN Training Pipeline (2)

180

Prediction 
head

Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

(2) Where does ground-truth come from? 
- Supervised labels
- Unsupervised signals



Supervised vs Unsupervised

 Supervised learning on graphs

 Labels come from external sources

 E.g., predict drug likeness of a molecular graph

 Unsupervised learning on graphs

 Signals come from graphs themselves 

 E.g., link prediction: predict if two nodes are connected

 Sometimes the differences are blurry

 We still have “supervision” in unsupervised learning

 E.g., train a GNN to predict node clustering coefficient

 An alternative name for “unsupervised” is “self-

supervised”
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Supervised Labels on Graphs

 Supervised labels come from the specific 
use cases. For example:

 Node labels 𝒚𝒗: in a citation network, which 
subject area does a node belong to

 Edge labels 𝒚𝒖𝒗: in a transaction network, 
whether an edge is dishonest

 Graph labels 𝒚𝐺: among molecular graphs, the 
drug likeness of graphs

 Advice: Reduce your task to node / edge / 
graph labels, since they are easy to work with
 E.g., we knew some nodes form a cluster. We can 

treat the cluster that a node belongs to as a node 
label
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Unsupervised Signals on Graphs

 The problem: sometimes we only have a graph, 
without any external labels

 The solution: “self-supervised learning”, we can 
find supervision signals within the graph.
For example, we can let GNN predict the following:

 Node-level 𝒚𝑣. Node statistics: such as clustering 
coefficient, PageRank, …

 Edge-level 𝒚𝑢𝑣. Link prediction: hide the edge between 
two nodes, predict if there should be a link

 Graph-level 𝒚𝐺. Graph statistics: for example, predict if 
two graphs are isomorphic

 These tasks do not require any external labels!
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GNN Training Pipeline (3)
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- Classification loss
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Settings for GNN Training

 The setting: We have 𝑁 data points

 Each data point can be a node/edge/graph

 Node-level: prediction  𝒚𝑣
(𝑖)

, label 𝒚𝑣
(𝑖)

 Edge-level: prediction  𝒚𝑢𝑣
(𝑖)

, label 𝒚𝑢𝑣
(𝑖)

 Graph-level: prediction  𝒚𝐺
(𝑖)

, label 𝒚𝐺
(𝑖)

 We will use prediction  𝒚(𝑖), label 𝒚 𝑖 to refer 

predictions at all levels

185



Classification or Regression

 Classification: labels 𝒚 𝑖 with discrete value

 E.g., Node classification: which category does a 

node belong to

 Regression: labels 𝒚 𝑖 with continuous 

value

 E.g., predict the drug likeness of a molecular 

graph

 GNNs can be applied to both settings

 Differences: loss function & evaluation 

metrics
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Classification Loss

Cross entropy (CE) is a very common loss function 
in classification

 𝐾-way prediction for 𝑖-th data point:

CE 𝒚(𝑖),  𝒚(𝑖) = − 
𝑗=1

𝐾

𝒚𝑗
(𝑖)

log( 𝒚𝒋
(𝒊)
)

where:

𝒚(𝑖) 𝜖 ℝ𝐾 = one-hot label encoding

 𝒚(𝑖)𝜖 ℝ𝐾 = prediction after Softmax(⋅)

 Total loss over all 𝑁 training examples

Loss = 
𝑖=1

𝑁

CE 𝒚(𝑖),  𝒚(𝑖)
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𝑖-th data point
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0 0 1 0 0
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Regression Loss

 For regression tasks we often use Mean 

Squared Error (MSE) a.k.a. L2 loss
 𝐾-way regression for data point (i):

MSE 𝒚(𝑖),  𝒚(𝑖) = 
𝑗=1

𝐾

(𝒚𝑗
(𝑖)
−  𝒚𝑗

𝑖
)2

where:

𝒚(𝒊) 𝜖 ℝ𝑘 = Real valued vector of targets

 𝒚(𝒊)𝜖 ℝ𝑘 = Real valued vector of predictions

 Total loss over all 𝑁 training examples

Loss = 

𝑖=1

𝑁

MSE 𝒚(𝑖),  𝒚(𝑖)
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GNN Training Pipeline (4)
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(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC



Evaluation Metrics: Regression

 We use standard evaluation metrics for GNN

 In practice we will use sklearn for implementation

 Suppose we make predictions for 𝑁 data points

 Evaluate regression tasks on graphs:

 Root mean square error (RMSE)

 
𝑖=1

𝑁 𝒚(𝑖) −  𝒚(𝑖) 2

𝑁

 Mean absolute error (MAE)
 𝑖=1
𝑁 𝒚(𝑖) −  𝒚(𝑖)

𝑁
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https://scikit-learn.org/stable/modules/model_evaluation.html


Evaluation Metrics: Classification

 Evaluate classification tasks on graphs:

 (1) Multi-class classification
 We simply report the accuracy

1 argmax  𝒚(𝑖) = 𝒚(𝑖)

𝑁

 (2) Binary classification
 Metrics sensitive to classification threshold

 Accuracy

 Precision / Recall

 If the range of prediction is [0,1], we will use 0.5 as 
threshold

 Metric Agnostic to classification threshold

 ROC AUC
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Metrics for Binary Classification

 Accuracy:
TP+TN

TP+TN+FP+FN
=

TP+TN

|Dataset|

 Precision (P):
TP

TP+FP

 Recall (R):
TP

TP+FN

 F1-Score:
2P∗R

P+R
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(4) Evaluation Metrics

 ROC Curve: Captures the tradeoff in TPR 

and FPR as the classification threshold is 

varied for a binary classifier. 
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TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

Note: the dashed line represents 
performance of a random classifier

Image Credit: 

Wikipedia
FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


(4) Evaluation Metrics

 ROC AUC: Area under the ROC Curve. 

 Intuition: The probability that a classifier will rank a 
randomly chosen positive instance higher than a 
randomly chosen negative one
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Content Credit: 
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GNN Training Pipeline (5)
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Dataset split



Dataset Split: Fixed/Random Split

 Fixed split: We will split our dataset once

 Training set: used for optimizing GNN 
parameters

 Validation set: develop model/hyperparameters

 Test set: held out until we report final 
performance

 Random split: we will randomly split our 
dataset into training/validation/test

 We report average performance over different 
random seeds
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Why Splitting Graphs is Special

 Suppose we want to split an image dataset

 Image classification: Each data point is an 

image

 Here data points are independent

 Image 5 will not affect our prediction on image 1
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Why Splitting Graphs is Special

 Splitting a graph dataset is different!

 Node classification: Each data point is a node

 Here data points are NOT independent

 Node 5 will affect our prediction on node 1, because 

it will participate in message passing  affect node 1’s 

embedding

 What are our options?
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Why Splitting Graphs is Special

Solution 1 (Transductive setting): The input graph 

can be observed in all the dataset splits (training, 

validation and test set). 

 We will only split the (node) labels

 At training time, we compute embeddings using the 

entire graph, and train using node 1&2’s labels

 At validation time, we compute embeddings using the 

entire graph, and evaluate on node 3&4’s labels
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Why Splitting Graphs is Special

Solution 2 (Inductive setting): We break the edges 
between splits to get multiple graphs

 Now we have 3 graphs that are independent. Node 5 
will not affect our prediction on node 1 any more

 At training time, we compute embeddings using the 
graph over node 1&2, and train using node 1&2’s 
labels

 At validation time, we compute embeddings using the 
graph over node 3&4, and evaluate on node 3&4’s 
labels
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Transductive/Inductive Settings

 Transductive setting: training/validation/test sets 
are on the same graph
 The dataset consists of one graph

 The entire graph can be observed in all dataset 
splits, we only split the labels

 Only applicable to node/edge prediction tasks

 Inductive setting: training/validation/test sets are 
on different graphs
 The dataset consists of multiple graphs

 Each split can only observe the graph(s) within the 
split. A successful model should generalize to 
unseen graphs

 Applicable to node/edge/graph tasks
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Example: Node Classification

 Transductive node classification

 All the splits can observe the entire graph structure, 

but can only observe the labels of their respective nodes
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 Inductive node classification
 Suppose we have a dataset of 3 graphs
 Each split contains an independent graph



Example: Graph Classification

 Only the inductive setting is well defined 

for graph classification

 Because we have to test on unseen graphs

 Suppose we have a dataset of 5 graphs. Each 

split will contain independent graph(s).
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Example: Link Prediction

 Goal of link prediction: predict missing edges

 Setting up link prediction is tricky:

 Link prediction is an unsupervised/self-supervised 

task. We need to create the labels and dataset splits 

on our own

 Concretely, we need to hide some edges from the 

GNN and the let the GNN predict if the edges exist
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Setting up Link Prediction

For link prediction, we will split edges twice

Step 1: Assign 2 types of edges in the original graph

 Message edges: Used for GNN message passing

 Supervision edges: Use for computing objectives
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Setting up Link Prediction

 Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

 Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent 

graph
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Setting up Link Prediction

 Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

 Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph

 In train or val or test set, each graph will have 2

types of edges: message edges + supervision 

edges

 Supervision edges are not the input to GNN
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Setting up Link Prediction

Option 2: Transductive link prediction split:

 This is the default setting when people talk 

about link prediction

 Suppose we have a dataset of 1 graph
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Setting up Link Prediction

Option 2: Transductive link prediction split:

 By definition of “transductive”, the entire graph 

can be observed in all dataset splits

 But since edges are both part of graph structure 

and the supervision, we need to hold out 

validation/test edges

 To train the training set, we further need to hold out 

supervision edges for the training set
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Setting up Link Prediction

Option 2: Transductive link prediction split:
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After training, supervision edges are known to GNN. Therefore, an ideal model 
should use supervision edges in message passing at validation time. 
The same applies to the test time.
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Use training message 

edges to predict 
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(2) At validation time:

Use training message 

edges & training 

supervision edges to 

predict validation 
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(3) At test time:
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GNN Training Pipeline
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Implementation resources:
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/GraphGym


Summary

 We introduce a general GNN framework:

 GNN Layer: 

 Transformation + Aggregation

 Classic GNN layers: GCN, GraphSAGE, GAT

 Layer connectivity: 

 The over-smoothing problem

 Solution: skip connections

 Graph Augmentation:

 Feature augmentation

 Structure augmentation

 Learning Objectives

 The full training pipeline of a GNN
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Questions


