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Graph Machine Learning

Data points with Features Data points with Features +
Structure (Network)

Traditional machine learning relies on pre-defined features
from Isolated data points, while graph machine learning
leverages both features and relations between entities to
., capture complex dependencies in networked data
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Why Graph Machine Learning?
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Not everything
can be represented as
a segquence or agrid
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Networks are complex

Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features




Why Is It Hard?
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Deep Learning in Graphs

Graph Regularization, Graph
convolutions e.g., dropout convolutions

Activation
function

Predictions: Node labels,
New links, Generated
graphs and subgraphs

Input: Network




Key point: “Representation Learning”

(Supervised) Machine Learning Lifecycle: This feature, that feature.
Every single time!

Raw | ‘ Graph Learning | ‘
[ Data Data Algorithm Model}
at Representation Downstream
Eng Ing Learning - prediction task

Degree, PageRank, Auto matica”y
hlets, ...
graphiets learn the features




Deep graph representation learning

To learn a low-dimensional dense vector that encodes node
structures and attributes, enables efficient feature learning for
graph-structured data

node representation
Learn a neural network..
u
d .
u — N J
fru—->R o
[Rd
Feature representation,
embedding




Example

» Zachary’s Karate Club Network:
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Diverse level of tasks

Node level

Graph-level i : Community

gr:;lstlon, (subgraph)
generation evel
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Traditional ML Pipeline

Design features for nodes/links/graphs
Obtain features for all training data

e RP

G raph features
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Machine Learning with Networks

» Node classification
» Predict a type of a given node (categorizing users/items)

» Link prediction

» Predict whether two nodes are linked (knowledge graph
completion, Friend recommendation)

» Community detection

» |dentify densely linked clusters of nodes
» Network similarity

» How similar are two (sub)networks

» Graph Classification
» Categorize different graphs(Molecule property prediction)

13
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Example: Academic Graph Mining

 Input:

— an academic graph (papers, citation links, ...)

e Applications:

— recommendation, tagging, disambiguation, ...

cite

/
E Auth m'z

write

Paper Recommendation

ol

How?

Paper Tagging

I

Citation 1

Influence Prediction

Name Disambiguation

-
an*

bo 5D 5D be
l

=

Academic Graph

Applications
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Question

* How to represent a node in a graph to help downstream

tasks?
* Node Embedding!

e RP

E (T [Paper Recommendation} & == E—=Q
L [(Tm =

ala [ Paper Tagging } i—’ Tag
R T oy

% -:I [ Influence Prediction J E—_El Citation 1
el 1 Name Disambiguation | gga ™V gm %
Embeddings Applications
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Examples of
Node-Level Tasks




Example: Node Classification

&ﬁ

Machine
Learning

>




Example: Node Classification
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Example of “Node-level” ML

Amino group

Carboxyl group

« carbon ~

Side
chain

AMINO ACID AMINO ACID
COO™ COO~ COO~ COO~ COO™ COO™
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| | | 3
. H CH, CH =4 CH, CH, CH,
2 /N & I I |
3 CHj; CHy b= CH, CH, C—NH+
= % A z (7]
o Glycine Alanine Valine o | | N
™ & g CH, CH, o
2 coo- [lolen coo- G I ' C—N
+ + + ) | |
2| H]N—C—H HsN—C—H HsN—C—H g y &
w | I I £ NH; C =NH,
ﬁ.. CHZ CHZ H—C —CH3 o |
S | I I & NH;
= /Ct' ?HZ ?HZ Lysine Arginine Histidine
= CHj CHg S CHs @
Sh, 3 coo- coo-
o | |
Leucine Methionine Isoleucine (14 HaKj =C=H Haltl —C—H
°
@ | |
feleloyy (eleley (eleloy =4 ’?Hz ?Hz
| + | | < =
HsN—C—H  HsN—C—H HaN—C —H 2 €00 ?Hz
| | | © s
CH,O0H H—C—OH CHy 2 €00
@ | | g Aspartate Glutamate
5 CHj SH 8
) Serine Threonine Cysteine coo- coo- coo-
@ ] | | + |
g coo- coo- coo- S| HN—C—H  HN—C—H HN—C—H
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Example of “Node-level” ML

ex) Protein Folding

 protein= sequence of amino acid

 3d structure

* interact with each other
*Goal: predict 3D structure based on amino acid sequence
*key idea of AlphaFold: “spatial graph”

* (1) node: amino acids

* (2) edges: proximity between nodes

Primary Secondary Tertiary Quaternary
structure structure structure structure
o Alpha helix
w AN~
]
; .
) C£/»—/
Arg
Amino acid chain Beta sheet Polypeptide Complex protein

¢7University of Kurdistan 20



Example of “Node-level” ML

T1037 / 6vr4d T1049 / 6y4af
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

® Experimental result

® Computational prediction

TWO EXAMPLES OF PROTEIN TARGETS IN THE FREE MODELLING CATEGORY. ALPHAFOLD PREDICTS HIGHLY ACCURATE
STRUCTURES MEASURED AGAINST EXPERIMENTAL RESULT.

21



Examples of
Edge-Level Tasks




Example: Link Prediction

ot o

>
Machine V4
Learning

- - - - 23
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Example: Link Prediction

Content
recommendation
Is link prediction!

X/ University of Kurdistan
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Example of “Edge-level” ML

ex) Recommender Systems
Formulation

* (1) node: user & items

* (2) edge: user & item interaction
» Goal: “Recommend item to users”
* (predict whether 2 nodes are related)

Users @ ,® @ @ @ Interactions
/

|
| /
|
v

/
| 4
o | NIE.

-— o =)

“You might also like”

X/ University of Kurdistan
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Example of “Edge-level” ML

Task: Recommend related pins to users
£ ”:? | Task: Learn node
- embeddings z; such that

1
- .\_
s

SUCCESSFUL

=S ‘ b < RECOMMENDATION d(anRel: ZCCLkEZ)

< d(Zcake1 Zsweater)

BAD RECOMMENDATION

Predict whether two nodes in a graph are related
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Example of “Edge-level” ML

ex) Drug Side Effects
Background: many patients & many drugs
*Goal: predict adverse side effects of “pair of drugs”
* Formulation
* (1) node: drugs & proteins
* (2) edges: interactions
 drug-protein interaction
* protein-protein interaction
 drua-drua interaction

>

30%
prob.

65%
prob.

X/ University of Kurdistan
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Example of “Edge-level” ML

Query: How likely
will Simvastatin and
Ciprofloxacin, when
taken together,
break down muscle
tissue?

(D /S\Simvastatin
=\~

\ ? r2 (breakdown of muscle tissue)
]

A Drug © Protein o
Ciprofloxacin

ry Gastrointestinal bleed side effect A&—@ Drug-protein interaction
'> Bradycardia side effect ©@—O Protein-protein interaction
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Example of
A SubGraph Task




Example of “Subgraph-level” ML

Nodes: Road segments
Edges: Connectivity between road segments

Google Maps: traffic prediction
with GNN

30
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Traffic Prediction with GNNs

Predicting Time of Arrival with GNNS

Predictions

Google Maps
Training API

data

N

%Surfaced

(YN

Google.Maps Candidate Google Maps
FOULING user routes 2hP
System A-B

THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME.

31
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Google Maps : traffic prediction with GNN
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Examples of
Graph-Level Tasks




Example of “Graph-level” ML

Antibiotics are small molecular graphs
* Nodes: Atoms
Edge5° Chemical bonds

ROCHN ROCHN ROCHN

CO H CO, H CO,l H
penicillins cephalospor cephamycins
ROCHN
J:( 0 oH Ry S
) Fo7 " o
(0] z O
CO; H COzH CO,H
ooooo phems clavulanic acid penems
( apenem)
H
HO : . RHN on RHN
I, 14 J
(e] o o SO
CO,H COzH
carbapenems cardicin monobactam:




Example of “Graph-level” ML

ex) Drug Discovery Permalink
«Antibiotics = small molecular graphs
*Formulation

* (1) node: atoms

* (2) edges: chemical bonds
*(Q) Which molecules should be prioritized?
*eX) graph classification model

 predict promising molecules among candidates
[o]oJo[ofofofo[o |

Node
=

' (A*) _~Edge
- O
)
O / O

‘J ‘/ s Node
[o

lo[oJo]o]of1]o]0]

Molecule Graph representation

XV University of Kurdistan 35


https://seunghan96.github.io/gnn/gnn1/#ex-drug-discovery

Example of “Graph-level” ML

Generate novel molecules ( new structure)
 with “high drug likeness”
« with “desirable properties”
Graph generation: Generating novel molecules

1) NodelD £ “ ’ n @
© Node / Observe l A Sample N odelD Act render // '\\‘ s .
(2) @ — NodelD » Env X _ep rewal
= fee S ) G " . EdgeType update O © | 0 | Final reward
n Messag @ n 5[ op @—G

(d) Dynamics
emb dding  (a) State — G, Scaffold — C (b) GCPN — mg(a,|G: U C) (c) Action — a; ~ g P(Geyq|Ge ar) (e) State — Gyyq (f) Reward — 7y

Use case 1: Generate novel molecules Use case 2: Optimize existing molecules to
with high Drug likeness value have desirable properties

jﬁ, Cf%, 4_\!53 - ﬁ?p}“\«

0.948 0.945 -8.32 => 071
b 1 58
Ee 9%“3'\ TR S

0.944 0.941 <— Drug likeness—> 5.55 -1.78

¢/ University of Kurdistan
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Graph Embedding Methods

Shallow embedding
« Matrix factorization-based approaches
« Random Walk-Based (Deepwalk- Node2vec)

Deep embedding

 Graph Neural Networks (GCN- GAT- GraphSAGE)

« Autoencoder-Based Methods

 Temporal/Dynamic Graph Embeddings (TGAT)

« Heterogeneous Graph Embeddings (HAN, Metapath2vec)
« Graph Transformers (Graphormer, GTN)

X7 University of Kurdistan 37
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Shallow Embedding




Embedding nodes

Goal: [similarity(u, v)

in the original network

Q
:N

N
<

Similarity of the embedding

g DU D
/ \ "-""‘.' .Z’U
\ X encode nodes A
VAN |
T OO0
ENC(v)
<=, Original network embedding space

g :

(0\ ')

2% ey
b@,s'?s-’:f- \Z““‘ &

University of Kurdistan
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Learning node embeddings

1. Define an encoder ENC that maps nodes to low
dimensional spaces

2. Define a node similarity function (i.e., a measure of
similarity in the original network).

3. Decoder DEC maps from embeddings to the similarity score

4. Optimize the parameters of the encoder so that we
minimize a /oss function L that looks (roughly) like:

L= 2 (similarity(u,v) — z, * 2,,)*

uvev

40




Shallow embeddings(*)

Each node Is assigned a single d-dimensional vector
Learn |[V| X d embedding matrix Z: each column /is the
embedding z; of node /

embedding vector for a

embedding specific node

madtrix '@
'@

\ e -

_ < > Dlmen5|9n/5|ze of

Z — 55:55 embeddings
‘®;
1o

J

one column E& node _
(*) As opposed to deep learning in graphs (GNN embeddings)
4

XV University of Kurdistan
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Shallow embeddings

Encoder is just an embedding lookup

ENC(w)=2Z,= Z1,

D Iv .
0
7 One-hot or
Zy VI indicator vector, all
Os but position v
0

N X 1

42




Framework Sum mary

Encoder + Decoder Framework
Shallow encoder: Embedding lookup

Parameters to optimize: Z which contains node
embeddings for allnodesu € IV

We will cover deep encoders in the GNNs

Decoder: based on node similarity.
Objective: maximize z. - z,, for node pairs (u, V)
that are similar

X/ University of Kurdistan
'«Wyof\t\l‘& [
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How to define node similarity

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they...

are linked?

share neighbors?
have similar “structural roles”?

44



Adjacency Matrix

» Simplest node similarity: Nodes u, v are similar
If they are connected by an edge

> This means: z,z,, = Ay,
which is the (u, v) entry of the graph adjacency
matrix A

> Therefore, Z'Z = A

R O O B
R O O O

— O F O




Adjacency-based approach

» The embedding dimension d (number of rows in Z)
IS much smaller than number of nodes n. (d <<n)

» Inner product decoder with node similarity defined
by edge connectivity Is equivalent to matrix
factorization of A.

Exact factorization A = Z'Z is generally not possible

» Matrix decomposition (for example, SVD

decomposition)

1. Scalability issues
2. Produced matrices that are very dense

A\

46




Adjacency-based approach

» However, we can learn Z approximately
> Objective:mzin | A—Z"Z |2

» We optimize Z such that it minimizes the L2 norm
(Frobenius norm) of A — ZTZ

» We used softmax instead of L2. But the goal to
approximate A with Z"Z is the same.

How: stochastic gradient descent

X7 University of Kurdistan
"Sity of W .
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Adjacency-based approach

The loss that what we want to minimize

embedding
sim'\!arity

L = Zu,v EVXV HAu,v 'ZZZ + Ly HZ

(possibly weighted) adjacency
matrix for the graph

X7 University of Kurdistan
"Sity of W .
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RANDOM -WALK BASED
EMBEDDINGS

X/ University of Kurdistan
TSty of WO, *
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Node Similarity Measure

Which is more related A,A’, B,B’ or C,C’?

S7R RS S
"
tre gty
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Random Walk Strategy

How?
Words = Nodes
Sentences = Paths, Random walks

51



Random Walk Strategy

A
Embedding Space
. © 0
OO0
PO OO 5 | wordave ~ O
> So D105 &
Random walk &

Low-dimensional
Rrepresentation

MNetwork

To generate node representations by simulating random walks
on a graph, capturing structural and relational patterns in a low-
dimensional space.

M(a) Link Prediction !
i [ 1
' |
1 (] ] 1
L Binary !
: L Classifier 1
. [(No) |
[ 4 1
I ]
[ i
e 1 1 1 4 e =l
:{b} MNode Classification 1
. :
I . ]
i Multi-labal
: ™| Classifier :
: ....... — :

Downstream Prediction Tasks
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Random Walk

10
Step 3 I l Step 4 @

Step 5
\

11

Given a graph and a starting point, we select
Step 2 ;5 neighbor of it at random, and move to this
neighbor; then we select a neighbor of this

G ° point at random, and move to it, etc.

\ The (random) sequence of points visited
this way is a random walk on the graph.

o 53




Random-walk embeddings

probability that /and

Zi * /- = CO-0ccur on arandom
]

walk over the network

54



Random-walk Embeddings

1. Estimate probability of
visiting node v on a
random walk starting
from node u using some
random walk strategy R.

2. Optimize embeddings to
encode these random

walk statistics.

X/ University of Kurdistan
TSty of WO, .
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Why Random Walks?

1. Expressivity: Flexible stochastic definition of
node similarity that incorporates both local and
higher-order neighborhood information. /dea. if
random walk starting from node u visits v with
high probability, u and v are similar (high-order
multi-nop information)

2. Efficiency: Do not need to consider all node
pairs when training; only need to consider pairs
that co-occur on random walks.

X/ University of Kurdistan
TSty of WO, *
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Unsupervised Feature Learning

» Intuition: Find embedding of nodes In
d-dimensional space that preserves similarity

» ldea: Learn node embedding such that nearby
nodes are close together in the network

» Given a node u, how do we define nearby
nodes?

» Np(u): neighbourhood of u obtained by some
random walk strategy R

57
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Random Walk Optimization

1. Run short fixed-length random walks starting from
each node u in the graph using some random walk
strategy R.

2. For each node u collect Ni(u), the multiset™ of nodes
visited on random walks starting from w.

3. Optimize embeddings according to: Given node u,
predict its neighbors Ng (u).

Maximum
are max log P(Ns (u)] Z — Max
g1 Z/ g P(Nr(W)] Z) likelihood

“ objective

*N,(u) can have repeat elements since nodes can be visited multiple times on random
R
walks

58
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Random Walk Optimization

Equivalently,
argmianz 2 —log(P(v|z,))

Z
uevV veNg(u)

Intuition: Optimize embeddings z,, to minimize the negative log-
likelihood of random walk neighborhoods N (u).

Parameterize P(v|z,) using softmax:

T Why softmax?
exp (Zuzv) We want node v to be most similar
— to node u (out of all nodes n).

ZnEV eXp (Z;Ezn) Intuition: Ziexp(xl-) ~ mlax exp(xi)

59



Random Walk Optimization

Putting it all together:

B exp(z,Zy)
B [DIRRLES e ol

UEV |VENR(u)

sum over all

nodes u seen on random and v co-occuring on
walks starting from u random walk

/ sum over nodes v predicted probability of u

Optimizing random walk embeddings = Finding embeddings z,, that minimize L0OSS

60




How should we randomly walk?

= DeepWalk just runs fixed-length, unbiased
random walks starting from each node

= Node2vec: biased random walks that can
trade-off between local and global views of the
network

X7 University of Kurdistan
"Sity of W .
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DeepWalk

Short random walks = sentences

Scale Free Graph

U7 —
Vg —
v37 —
V73 —
75 —

Voyg —
vy —
V34 —
Vea —

V14 —

Vs —
V3 —
Vg —
Vs —
Vg —

v —
v —
vl —
1 —
U1 —

V17 —
v12 —
V10 —
U112 —
U113 —

Ugo —
V73 —

V94 —

vl —

Vg1 —

Short truncated random walks are sentences In

an artificial language

¢/ University of Kurdistan
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DeepWalk

=
.o 3
..\i ._. .‘# “ ' Random Walks e 1] Uj —— =
® —J.. R\ 5
. . , ey —

=

@ Input: Graph @ Representation Mapping

0.6 » .‘
08 Sy g ® e
1.0} ® ’ L]
1209 @

1.4t

1.6+

1.8+

P(w; ) oomrEm

I 1 1 I I 1 L I
-1.0 -05 0.0 0.5 1.0 1.5 2.0 2.5

(4) Hierarchical Softmax (5) Output: Representation

¢/ University of Kurdistan



Node2vec: Biased Walks

ldea: use flexible, biased random walks that can
trade off between local and global views of the
network (Grover and Leskovec, 2016).

64


https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Node2vec: Biased Walks

Two classic strategies to define a neighborhood
Nr(u) of a given node u:

65



Biased 2"Y Order Random Walks

Walker from ¢, traversed (¢, v) and Is now In v, where
o go next? Same distance to t

Xl\

Closertot

How much far away from t? Only three possible choices:
» Farther distance (distance =2)
= Same distance (distance = 1)

-, " Backtot(distance =0)

X/ University of Kurdistan
'«Wyof\t\l‘& [

66



Interpolating BFS and DFS

Biased random walk R that given a node u generates
neighborhood Ny (u)

» Two parameters:

» Return parameter p:
» Return to the previous node

» In-out parameter gq:
» Moving outwards (DFS) vs. inwards (BFS)
» Intuitively, g is the “ratio” of BFS vs. DFS

» Specify how a single step of biased random walk
IS performed

» Random walk is then just a sequence of these steps.

67
X7 University of Kurdistan
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One step of the biased random walk

At v from t, where to Define the random walk by specifying
go next? the walk transition probabilities on
edges adjacent to the current node v:

Same distanceto t

» 1 to node with same distance X1 "\1
= 1/g node further apart

= 1/pbacktot
(unnormalized probabilities)

—~” Farther from t

1/q

1/p
Closerto t

BFS-like walk: Low value of p
DFS-like walk: Low value of g

- - - L] 68
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One step of the biased random walk

At v from S,

1 1/q

UV —

Target

Prob. Dist. (§;,0)
1/p| o

1 1
1/q 2
1/q1 2

Unnormalized
transition prob.
segmented based
on distance from t
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Node2vec limitation

node2vec tend to fail in
structural equivalence tasks.

()] .

=2 -1
(d) node2vec

¢/ University of Kurdistan 70




GRAPH NEURAL NEWTORKS
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ldea: Convolutional Networks

CNN on an image:

e
[ 302
8

Subsampling nvolutions Subsampling Fully connected

Can we generalize convolutions beyond simple lattices?
-, Leverage node features/attributes (e.g., text, images)
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Why is it hard?

Graphs are far more complex!

arbitrary size and complex ﬁ o o a
topological structure VS. Text
) . Networks Images
Graphs look like this: *—e
O
. o [
® or this: o . p:
@ e o o
® ® o
@ .. o ° ® O ¢
® ® ® ®

" No fixed notion of (spatial) locality or indl'ng Window on the graph
= No fixed node ordering or reference point
Often dynamic and have multimodal features
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A Naive Approach

» Join adjacency matrix and features
» Feed them into a deep neural net:

(.»:,Ty
A B C D E Feat —— W A S
r N\ i-z_,,}/:_ 2 WP
Al o 11 1 o0 1 0 '
@) ®) Bl 1 0 0 1 1 0 0
N’@ cllt o o 1 o 0 1 )
© ©) D 1 1 1 0 1 1 1 N
E L 0O 1 0 1 O 1 0 ) S— ,_,;_'_‘__.:::-:":":':--_--_-._.._.__U____::;::EE':-:::._____
» |Issues with this idea:

» O0(|V]) parameters
» Not applicable to graphs of different sizes
» Sensitive to node ordering




Permutation Invariance

» Graph does not have a canonical order of the nodes!
» We can have many different order plans.

Node features X; adjacency matrix 4,
Order plan 1

TMTmMmOO T >
TTmMmOoOO >

75




Permutation Invariance

» Graph does not have a canonical order of the nodes!
» We can have many different order plans.

Node features X, Adjacency matrix A,

Order plan 2

TmOooO @ >

MMmMmOoOO T®™>
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Permutation Invariance

XV University of Kurdistan
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Invariance and Equivariance

> Permutation-invariant
Permute the input, the
f(A,X) = fF(PAPT,PX)  output stays the same.

» Permutation-equivariant e emutos ecorimay
Pf(A,X) = f(PAP",PX)
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Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

> No

Switching the order of the input
leads to different outputs!
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Graph Neural Network Overview

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

> No.

hidden layer 1 hidden layer 2 hidden layer 3

A B C D E Feat
A ( 0 1 1 1 O 1 0 )
@ © B 1 0 0 1 1 0 O
N’@ C 1 0 0 1 O 0 1
© D D 1 1 1 0 1 1 1
E L 0 1 0 1 O 1 0 )

This explains why the naive MLP
approach fails for graphs!

7/ University of Kurdistan
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Graph Neural Network Overview

» Graph neural networks consist of multiple
permutation equivariant/invariant functions.




Graph Convolutional Networks

ldea: The neighborhood of a node defines a
computation graph

Determine node Propagate and
computation graph transform information

Learn how to propagate information across
the graph to compute node features

82
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ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

4
TARGET NODE . A“

-
l g
.
.
.
.
.
-
** “.‘

oy
INPUTGRAPH . e ‘
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ldea: Aggregate Neighbors

» Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

INPUT GRAPH

Neural networks

84



ldea: Aggregate Neighbors

» Intuition: Network neighborhood defines a
computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH

- | !
] ]
- % o &
® ® o ® o
. RN S B 'S
ese ‘%6l o° %65,




Deep Model: Many Layers

» Model can be of arbitrary depth:
» Nodes have embeddings at each layer

» Layer-0 embedding of node v Is its input feature, x,

» Layer-k embedding gets information from nodes

that are k hops away Layer-0

Laye ,,,,,,,,,,,,,,,,, A XA
TARGET NODE .A‘ @ XC
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Neighborhood Aggregation

» Neighborhood aggregation: Key distinctions are
In how different approaches aggregate
Information across the layers

____________________ a
.
TARGET NODE ‘4‘<‘
l What is in the box?” @
x @
< PR > .
’ ? “x ‘ V’ ...... ‘
"oy
INPUTGRAPH . ‘




Neighborhood Aggregation

» Basic approach: Average information from
neighbors and apply a neural network

(1) average messages from ®
e MO neighbors ® P ®
s oA
IR O
a < N @
F
o<y
INPUT GRAPH (2) apply neural network ®




The Math: Deep Encoder

» Basic approach: Average neighbor messages
and apply a neural network
Initial 0-th layer embeddings

- __— are equal to node features _ embedding of
/ v at layer k

h,(,k+1) =E|(Wk + Bk.), Vk € {0, ...,l— 1}
\

K Total number
Z, = hf} ) Average of neighbor’s of layers

previous layer embeddings

Non-linearity NSQUSSENGIETNERN ClpliElildy
invariant pooling/aggregation.
(e.g., ReLU) |Rbiakabiaailda i
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Model Parameters

Trainable weight matrices weight matrices
hq(;O) =X, yhat we learn) are shared
h* = o (W z \.h(k)) vk € {0..K — 1
IN(v)

RN CO R e

¥™~~Final node embedding
We can feed these embeddings into any loss function
and run SGD to train the weight parameters

h¥: the hidden representation of node v at layer k
» W, weight matrix for neighborhood aggregation
== B, . weight matrix for transforming hidden vector of self

90




GCN: Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?

» Given a node, the GCN that computes Its
embedding Is permutation invariant

Shared NN weights
\

o i#
\/

Target Node Average of neighbor’s previous layer
embeddings - Permutation invariant o




Training the Model

How do we train the GCN to
generate embeddings?

92



How to Train A GNN

» Node embedding z, is a function of input graph

» Supervised setting: We want to minimize loss L:
min L(y, fo(zy))

» y. node label

» L could be L2 if y is real number, or cross entropy if y is
categorical (loss in Maximum Likelihood Estimation)

» Cross entropy loss (CE):
> CE(y, f(0) = — Zi_1(vi log fo (X))

> y; and fg(x); are the actual and predicted values of the i-th class
» Intuition: the lower the loss, the closer the prediction is to one-hot

» Unsupervised setting:
» No node label available
» Use the graph structure as the supervision!

X7 University of Kurdistan
"Sity of W .
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Unsupervised Training

One possible idea: “Similar” nodes have similar
embeddings:

min@ L — z CE(yu,v; DEC(Z‘LU Zv))

ZurZy
» where y, , = 1 when node u and v are similar
> z, = fo(u) and DEC(-,-) IS the dot product

Node similarity can be anything from embeddings,
e.g., a loss based on:

» Random walks (node2vec, DeepWalk, struc2vec)
= > Matrix factorization
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Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

Safe or toxic
drug?

Safe or toxic
drug?

. .
o n®

E.g., a drug-drug
interaction network

95



Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

Use cross entropy loss

L= plog(o @) + (1 - )
VeV
Encoder output: e .
o i o Node class
Safe or toxic drug? ﬁ i . label

AN

96
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Model Design: Overview

(1) Define a neighborhood

aggregation function
X

ZA." D PPN W

(2) Define a loss function on the
embeddings

97




Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

[
o 2 N o
> ¥ 2%%
‘ “ i i * 2
0s: <%0 %, .- -2 0"
o 00 i K /

98



Model Design: Overview

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH x

o L] (@ ° o N
0 o ; u a
%,; .“ 2 .%%f.: .h.! ‘e : %,: .‘a « : .‘
® %%, Jo°° e e0 \ °** ®e0 o® ‘o4, ° '/




Inductive Capability

» The same aggregation parameters are
shared for all nodes:

» The number of model parameters is sublinear in
|V| and we can generalize to unseen nodes!

O o
T ............................................................................................ B,

shared parameters

e e ————————— P -

oe0 We Bk o o
‘ i “ shared parameters ‘ i

. Ry

INPUT GRAPH Compute graph for node A Compute graph for node B
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Inductive Capability: New Graphs

Q\/- !
v

Train on one graph Generalize to new graph

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generat
ambeddings on newly collected data about organism B

o\v‘.,’!i",%‘,

"Sity of W

101
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Inductive Capability: New Nodes

Zu
. R N
<\§ <\§ <\§T

\""-——
Generate embedding
Train with snapshot New node arrives for new node

» Many application settings constantly encounter
previously unseen nodes:
» E.g., Reddit, YouTube, Google Scholar

» Need to generate new embeddings “on the fly”

102
X7 University of Kurdistan
"Sity of W *



Summary so far

= How to build CNNs for graphs use local
neighborhood of a node

= Next: more details using a general GNN
framework

103




A General GNN Framework (5 main issues)

TARGET NODE (5) Learning objective

l

— e

(2) Aggregation

%:¢ (1) Message

INPUT GRAPH GNN Layer 2

104




General Framework

5 main issues

©, 2)

A single GNN layer: Aggregation and Message

» Layer connectivity: Stacking (3)

Graph manipulations(augmentation)

Learning objectives/metrics

105




A SINGLE GNN LAYER

106




A GNN Layer

ARGET NODE GNN Layer = Message + Aggregation
l » Different instantiations under this perspective
 GCN, GraphSAGE, GAT, ...

— st

(2) Aggregation

INPUT GRAPH

GNN Layer 2

x

% & (1) Message
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A Single GNN Layer

» ldea of a GNN Layer:

» Compress a set of vectors into a single vector

» Two-step process:
> (1) Message Output node embedding h;

> (2) Aggregation
Node v

t [-th GNN Layer

Q)

(2) Aggregation
%D¢ (1) Message L ® 6 0o -
. . . Input node embedding hff_l) : hffe_ﬁzv)

(from node itself + neighboring nodes)

X/ University of Kurdistan
TSty of WO, .
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Message Computation

(1) Message computation

> Message function: m;’ = MSG® (h(l 1))

» Intuition: Each node will create a message, which
will be sent to other nodes

> Example: A Linear layer m = w®Op{™Y
> Multiply node features with weight matrix W

£ (2) Aggregation
./ %:@ 1) Message
INPUT GRAPH . . .

109




Message Aggregation

(2) Aggregation

» Intuition: Node v will aggregate the messages from

Its neighbors u:
h® = AGG® ({ D ueN (v)})
» Example: Sum(-), Mean(:), or Max(-) aggregator
> hY = sum(m?,u e Nv)})

TARGET NODE Node v

j (2) Aggregation

% = @ (1) Message

INPUT GRAPH . . .
d - = 1 )
k.
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Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

D - h(l—l)
h) = o WO
v =0\ W NG|

UEN (v)

» How to write this as Message + Aggregation?

Message

(2) Aggregation
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Classical GNN Layers: GCN (2)
(1) Graph Convolutional Networks (GCN)

-1
h(l) =0 z W(l) h& ) t (2) Aggregation
’ |N(U)| % @ (1) Message
UEN(v) o i .
» Message:

W(’)h(l L Normalized by

IN (v)l
_ node degree
> Aggreg atIOn (In the GCN paper they use a

slightly different normalization)

» Sum over messages from neighbors, then apply
activation

» Each Neighbor: mg)

In GCN the input graph is
assumed to have self-edges

Wﬂg\% > h(l) _ O'(Sum ({ (1) U N(v)})) that are included in the

\go summation.

112
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Classical GNN Layers: GCN

‘Basic Neighborhood Aggregation

hr—1
hy =0 | Wi “ — 4+ Bihy ™!
EXN%) V()]

VS.
" GCN Neighborhood Aggregation
Klpf & . Z hk_l
Welling  h, =o | Wy u
. uEN(v)UU \/|N(’U,)||N(’U)| |

same matrix for self and per-neighbor
neighbor embeddings normalization

= o(D AD s H*IWED) | A= A+ Iy
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Classical GNN Layers: GraphSAGE

7¥

17— label

k=2 )

1. Sample neighborhood 2. Aggregate feature information

3. Predict graph context and label
from neighbors

using aggregated information

(SAmple and aggreGatE),

A general inductive framework that efficiently generate node
embeddings for previously unseen data.

Uniformly sample a fixed-size set of neighbors, instead of
 using full neighborhood sets
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Classical GNN Layers: GraphSAGE

(2) GraphSAGE

0 = o (WO conear (12, 06 ([, vu e )

>

» Message is computed within the AGG(+)
» Two-stage aggregation
» Stage 1. Aggregate from node neighbors
h(),, < AGG ({h{ ™, vu e Nw)})

» Stage 2: Further aggregate over the node itself

h{’ « ¢ (W® - CONCAT(h{ ™", h{) )

115
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GraphSAGE Neighbor Aggregation

» Mean: Take a weighted average of neighbors

h(l—l)
AGG = —
Aggregation

|N(U)| Message computation

» Pool: Transform neighbor vectors and apply
symmetric vector function Mean(-) or Max(+)
AGG =[Meaf ((MLB(h{ ™), vu € N(v)})

. applied to a
Aggregation Message computation random

permutation

» LSTM: Apply LSTM to reshuffled of neighbors

AGG =\08IM (10, vu € m(N(W))R__

X7 University of KuAggkggation




GraphSAGE: L2 Normalization

£, Normalization:

> Optional: Apply £, normalization to h{’ at every
layer

O by
> hv W Vv € V where ”U”Z = Z u (32

norm)

» Without ¢, normalization, the embedding vectors have
different scales (£,-norm) for vectors

» In some cases (not always), normalization of
embedding results in performance improvement

117
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Classical GNN Layers: GAT (1)

(3) Graph Attention Networks

l -1
h1(7) — G(ZuEN(v) avuw(l)hgc ))

Attention weights

=  Welighting factor (importance) of the message of node u to
node v

= |n GCN and GraphSAGE:

P Ay = ﬁ defined explicitly based on the structural properties
of the graph (node degree)

» All neighbors u € N(v) are equally important to node v
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Classical GNN Layers: GAT (2)

(3) Graph Attention Networks

[ -1
hT(J) — O-(ZuEN(v) avuw(l)hgt ))

Attention weights

Not all node’s neighbors are equally important
» Attention is inspired by cognitive attention.

» The attention «a,, focuses on the important parts of the
Input data and fades out the rest.

» |dea: the NN should devote more computing power on that
small but important part of the data.

» Which part of the data is more important depends on the
context and is learned through training.

119
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Graph Attention Networks

Can weighting factors a,,, be learned?

» Goal: Specify arbitrary importance to
different neighbors of each node in the graph

» ldea: Compute embedding h,(f) of each node
In the graph following an attention strategy:
» Nodes attend over their neighborhoods’ message

» Implicitly specifying different weights to different
nodes in a neighborhood

120
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Attention Mechanism (1)

Let a,, be computed as a byproduct of an
attention mechanism a:

» (1) Let a compute attention coefficients e,
across pairs of nodes u, v based on their
messages:

e,y = a(W(l)hg_l),W(l)hg_l))

> e,, indicates the importance of u's message to
node v

121




Attention Mechanism (2)

» Normalize e,, Into the final attention weight

avu
» Use the softmax function, so that ., ¢y, @y = 1

_exp(en)
ZkEN(v) exp(eyk)
» Weighted sum based on the final attention
weight

) _ (1-1)
hv - G(ZuEN(v) w(l)hu )

Weighted sum using a5, Q4c, Aup:
h = 6 (s WO V4, WORE D+




Attention Mechanism (3)

What is the form of attention mechanism a?

» The approach is agnostic to the choice of a

» E.g., use a simple single-layer neural network
» a have trainable parameters (weights in the Linear layer)

' _ (1-1) (1-1)
| U.‘i‘?.f‘.ﬁf".t.?f‘.itﬂ Lo gy = a (WORD, wORSD)
(-1 ¢-D = Linear (Concat (W(l)hg_l), w(l)hg—l)))
A

5 Parameters of a are trained jointly:

» Learn the parameters together with weight matrices (i.e.,
other parameter of the neural net W) in an end-to-end
fashion

123
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Attention Mechanism (4)

» Multi-head attention: Stabilizes the learning
process of attention mechanism

» Create multiple attention scores (each replica with
a different set of parameters):

D - [-1
h1(y) 1] = O-(ZuEN(v) avuw(l)h( ))
A Y -1
h1()) 2 = O-(ZuEN(v) aqu( h( ))
D) rH- -1
h1(2) -3- = O-(ZuEN(v) avuw h( ))

> By concatenation or summation .........‘
L l l l Ip
> h® = AceP[11, hP 2], WP [31)

124
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Benefits of Attention Mechanism

» Key benefit: Allows for (implicitly) specifying different
Importance values (a,,) to different neighbors

» Computationally efficient:

» Computation of attentional coefficients can be parallelized
across all edges of the graph

» Aggregation may be parallelized across all nodes

» Storage efficient:

» Sparse matrix operations do not require more than
O(V + E) entries to be stored

» Fixed number of parameters, irrespective of graph size
» Localized:

» Only attends over local network neighborhoods
» Inductive capability:

» Itis a shared edge-wise mechanism

» It does not depend on the global graph structure
227 University of Kurdistan
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GNN Layer in Practice

» In practice, these classic GNN
layers are a great starting point A suggested GNN Layer

> We can often get better —

] ] Linear
performance by considering a ¥
general GNN layer design BatCT“"rm

» Concretely, we can include  Transformation - Dmﬁout
modern deep learning modules Activation
that proved to be useful in many Y

. | Attention
domains >
Aggregation
v
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GNN Layer in Practice

» Many modern deep learning modules can be

iIncorporated into a GNN layer
A suggested GNN Layer

» Attention/Gating: - Li:;ar
» Control the importance of a message ¥
> Batch Normalization: BatchiNorm

. . Y
» Stabilize neural network training Transformation - Dropout
> Dropout: Y
" Activation
» Prevent overfitting 3
> More: _ | Attention
- Y
» Any other useful deep learning modules Aggregation
v
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Batch Normalization

» Goal: Stabilize neural networks training

» ldea: Given a batch of inputs (node embeddings)
» Re-center the node embeddings into zero mean
» Re-scale the variance into unit variance

Input: X € RV*4
N node embeddings

Trainable Parameters:
v,B € RP

Output: Y € RV*4
Normalized node embeddings

1
Step 1: Y _Nz Xij
Compute the i=1
mean and variance : 1 ,
over N embeddings i 07 = Nz(xu W)
: i=1
Step 2- — X L
o ¥4 _ L] u.]
Normalize the feature X, ; = :
using computed mean 012 +e i

and variance N — AW E
Y =YXt B

X7 University of Kurdistan
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Dropout

» Goal: Regularize a neural net to prevent overfitting.

> ldea:

» During training: with some probability p, randomly set
neurons to zero (turn off)

» During testing: Use all the neurons for computation

Dropout

Removed neurons

129
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Dropout for GNNSs

» In GNN, Dropout is applied to the
linear layer in the message function t (2) Aggregation

......................

» A simple message function with ‘%ma (1) Message

i - ©
linear layer: = wOR{D o

w®

Dropout
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Activation (Non-linearity)

» Rectified linear unit (ReLU)
ReLU(x;) = max(x;, 0)
» Most commonly used

» Sigmoid
1
o) = 1+ e

» Used only when you want to restrict the rang
of your embeddings
» Parametric ReLU
PReLU(x;) = max(x;,0) + a;min(x;, 0)
a; IS a trainable parameter
» Empirically performs better than RelLU

y=x
0 X
N 1
y y=1+e‘x
T—
- X

131
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GNN Layer in Practice

» Summary: Modern deep

learning modules can be A GNN Layer
iIncluded into a GNN layer for .
better performance i Linfar
. . . BatchNorm
» Designing novel GNN layers is 7
still an active research frontier "™"omen | L=
Activation
> You can explore diverse GNN ¥
designs or try out your own ideas ¥
in GraphGym e

132
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https://github.com/snap-stanford/GraphGym

Summary

= Single GNN layer:

= Message

= Aggregation
Apply ML modules

= Attention

= Drop out

= Normalization

= Non-linearity

X/ University of Kurdistan
"”{yof\t\“& [
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General Framework

5 main issues

2)

* A single GNN layer: Aggregation and Message

 Graph manipulations(augmentation)

* Learning objectives/metrics
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STACKING LAYERS




Design Space of Graph Neural Networks

Stacking GNN Layers

N How to connect GNN layers into a GNN?
| * Stack layers sequentially
* Ways of adding skip connections

— st

GNN Layer 2

INPUT GRAPH

(3) Layer . .............................................. S i\

connect|v|ty ................................... ‘. ..... . ............................................. :

GNN Layer 1 % /‘ y
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https://arxiv.org/pdf/2011.08843.pdf

Stacking GNN Layers

» How to construct a Graph Neural Network?
» The standard way: Stack GNN layers sequentially
» Input: Initial raw node feature x,,

» Output: Node embeddings h,(,L) after L GNN layers

0
VL h1(7 ) = Xp
GNN Layer

[

GNN Layer

i b

GNN Layer
v h®

137
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Graph Neural Networks - Depth

Target Node

l

\\\ \~\“ @
How many * B®
hops should RN

we explore?
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The Over-Smoothing Problem

» The Issue of stacking many GNN layers
» GNN suffers from the over-smoothing problem
» The over-smoothing problem: all the node
embeddings converge to the same value

» This is bad because we want to use node
embeddings to differentiate nodes

» Why does the over-smoothing problem
happen?
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Receptive Field of a GNN

» Receptive field: the set of nodes that
determine the embedding of a node of interest

» In a K-layer GNN, each node has a receptive
field of K-hop neighborhood

Receptive field Receptive field Receptive field
for 1-layer GNN for 2-layer GNN for 3-layer GNN
O Node of interest R e O Nedear intepest Q O Node of interest

\ O\g @ Receptive field \ "\ Ty @ Reckptive ficl \ | ~m| @ Receptive field
\ \ ! \ \ \

\ \ /| 7
‘ \ /\ O Other nodes \ / o Other nodes \ //“ O Other nodes

/
Q\/ | aB
R T Y /;’/r, i';
QL

AN
\\ \U™~ .
//”'\\ A\ 2 S
; S \\\ \ ]/ > ‘\ /]
| ~ ORI Z1f\
Q“ AN
\( ,\ K Y A W
&7<J? 2R 7 t \"! x
. : , S "
X & ( T~
3 A b N o~ .
: / ~ | 7 S < — g
1 & 97 — =S
\ TSy b4 L/ // O @
\ A = 4
\ ] ~ \ |/
\‘ \ \‘ ‘\‘
\‘\, [\ // / i\
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Receptive Field of a GNN

» Receptive field overlap for two nodes

» The shared neighbors quickly grows when
we increase the number of hops (num of GNN
layers)

1-hop neighbor overlap  2_hop neighbor overlap 3-hop neighbor overlap
Only 1 node About 20 nodes Almost all the nodes!

O Nodes of interest
@ Shared neighbors
O Other nodes

O Nodes of interest
@ Shared neighbors
O Other nodes

O Nodes of interest
@ Shared neighbors
O Other nodes

\(X ‘
oS Y oV
W,_sanatvser
S \Wh7 e
= Wy

\

— — 141
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Receptive Field & Over-smoothing

» We can explain over-smoothing via the
notion of the receptive field

» We know the embedding of a node is
determined by its receptive field

» |If two nodes have highly-overlapped receptive
fields, then their embeddings are highly similar

» > nodes will have highly-overlapped receptive
fields = node embeddings will be highly
similar - suffer from the over-smoothing
problem
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Over-smoothing example

1-Layer
GCN

3-Layer
GCN
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Design GNN Layer Connectivity

What do we learn from the over-smoothing problem?

» Lesson 1. Be cautious when adding GNN layers

» Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always

help

» Step 1. Analyze the necessary receptive field to solve
your problem. E.g., by computing the diameter of the graph

» Step 2: Set number of GNN layers L to be a bit more than
the receptive field we like. Do not set L to be
unnecessarily large!

Question: How to enhance the expressive power of a
==GNN, If the number of GNN layers is small?

o 9y
(@D 144
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Expressive Power for Shallow GNNs

» How to make a shallow GNN more expressive?

Solution 1: Increase the expressive power within

each GNN layer
» In our previous examples, each transformation or
aggregation function only include one linear layer

» We can make aggregation/transformation become a
deep neural network!

(2) Aggregation

If needed, each boxcould
include a 3-layer MLP —

g %,:¢ (1) Transformation
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Expressive Power for Shallow GNNs

» How to make a shallow GNN more expressive?

Solution 2: Add layers that do not pass messages

» A GNN does not necessarily only contain GNN layers

» E.g., we can add MLP layers (applied to each node) before and
after GNN layers, as pre-process and post-process layers

V — +
i MLPtayer Pre- | Pre-processing layers: Important when
process | . .
MLP Layer layers | encoding node features is necessary.
""""""" 2 E.g., when nodes represent images/text
GNN Layer
A 4 .
GNN Layer Post-processing layers: Important when
v reasoning/transformation over node
GNN Layer .
embeddings are needed
Tt . Zieiieteteleieteeiett it
- [ MLP Layer Post- | E.g., graph classification, knowledge graphs
i ¥ process !
. | _MLP Layer layers
e L In practice, adding these layers works great!
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Deep Residual Learning for Image Recognition

Designh GNN Layer Connectivity

» What if my problem still requires many GNN layers?

Lesson 2: Add skip connections in GNNs

» Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

» Solution: We can increase the impact of earlier layers on the

Pre-
process .
layers | Duplicate
""""""""""""""""""""""" . L“t° t‘[’1"° Idea of skip connections:
o rancnes .
ki X Before adding shortcuts:
connectioné weight layer F(x)
F(x) relu N After adding shortcuts:
"""""""""""""" o weight layer identity F(x) +x
process :
layers ./_"(X) + x ol
--------------------------------------------- .. Sum two 147
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https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

ldea of Skip Connections

» Why do skip connections work?

» Intuition: SKkip connections create a mixture of models
> N skip connections = 2V possible paths

» Each path could have up to N modules

- We automatically get a mixture |l the possible paths:
of shallow GNNs and deep GNNs

Path 2: skip this.module

Skip
- connection
\/

TR

f .

Residual
module

Path 1: include this module —

(a) Conventional 3-block residual network

(b) Unraveled view of (a)
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Example: GCN with Skip Connections

X

» A standard GCN layer

X

weight layer identity

F(x) L relu
(-1
o _ —fhu
> hv =0 (ZueN(U) wi IN(v)| )

This is our F(x)

F(x)+x
e
. | MLP Layer Pre-

¥ process
MLP Layer layers
GNN Layer
GNN Layer Sk'p_ :
b ____________ connection
GNN Layer
MLP Layer Post-
v process
: | MLP Layer layers
S S —




Other Options of Skip Connections

Input: h,(,")
¢
» Other options: Directly GNN Layer
skip to the last layer h®
» The final layer directly GNNVLayer
aggregates from the all W |
the node embeddings In GNN Layer
the previous layers hg3>13:

Layer aggregation
Concat/Pooling/LSTM

Output: hf,f nal)

150
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General Framework

5 main issues

2)

* A single GNN layer: Aggregation and Message

* Layer connectivity: Stacking @

151




GRAPH MANIPULATIONS

152
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General GNN Framework

N Idea: Raw input graph + computational graph
| * Graph feature augmentation
* Graph structure manipulation

INPUT GRAPH

b

. %mﬂp ’i.

(4) Graph manipulation. X ®

153




Why Manipulate Graphs

Our assumption so far has been
» Raw input graph = computational graph
Reasons for breaking this assumption

» Feature level:

» The input graph lacks features - feature augmentation

» Structure level:
» The graph is too sparse - inefficient message passing
» The graph is too dense - message passing is too costly

» The graph is too large = cannot fit the computational graph
into a GPU

» ltis just unlikely that the input graph happens to be the
optimal computation graph for embeddings
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Graph Manipulation Approaches

» Graph Feature manipulation
» The input graph lacks features - feature
augmentation
» Graph Structure manipulation

» The graph is too sparse = Add virtual
nodes/edges

» The graph is too dense = Sample neighbors
when doing message passing

» The graph is too large - Sample subgraphs to
compute embeddings

155
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Feature Augmentation on Graphs

Why do we need feature augmentation?

» (1) Input graph does not have node
features

» This is common when we only have the
adjacency matrix

Standard approaches:

(a) Assign constant values to nodes
1

1 1

1
1

X& Y University of Kurdistan INPUT GRAPH
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Feature Augmentation on Graphs

(b) Assign unique IDs to nodes
» These IDs are converted into one-hot vectors

2 One-hot vector for node with ID=5
la 3 ID$= 5
. { 6 [0,0,0,0,1,0]
INPUT GRAPH 0 Total number of IDs = 6
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Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot

Constant node feature

One-hot node feature

Expressive power

Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature

High. High dimensional feature,
cannot apply to large graphs

Use cases

Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

155
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Feature Augmentation on Graphs

Why do we need feature augmentation?
(2) Certain structures are hard to learn by GNN

» Example: Cycle count feature
» Can GNN learn the length of a cycle that v, resides
In?
» Unfortunately, no

v, resides in a cycle v, resides in a cycle with

with length 3 length 4v
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Identity-aware Graph Neural

Networks

Feature Augmentation on Graphs

Why do we need feature augmentation?
» (2) Certain structures are hard to learn by GNN

» Solution:
» We can use cycle count as augmented node

features
westar  Augmented node feature for vAugmented node feature for v,
romavde o 10,0, 0, % 0, 0] [0,0,0,0, % 0]
v, resides in a cycle with v, resides in a cycle with
length 3 length 4

160
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Identity-aware Graph Neural Networks

Feature Augmentation on Graphs

Why do we need feature augmentation?
» (2) Certain structures are hard to learn by GNN

» Other commonly used augmented features:
» Clustering coefficient
» PageRank
» Centrality
> ...

» Any feature we have introduced when we talked
about traditional ML approaches
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Add Virtual Nodes / Edges

» (1) Add virtual edges

» Common approach: Connect 2-hop neighbors
via virtual edges

» Intuition: Instead of using adjacency matrix A
for GNN computation, use A + A?

Authors
Papers

= Use cases: Bipartite graphs
Author-to-papers (they authored)

2-hop virtual edges make an author-author
collaboration graph

162
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Add Virtual Nodes / Edges

(2) Add virtual nodes

» The virtual node will connect to all the
nodes in the graph The virtual node
» Suppose in a sparse graph, two nodes Q
have shortest path distance of 10
> After adding the virtual node, all the o
nodes will have a distance of 2
> Node A - Virtual node — Node B ol
» Benefits: Greatly improves message '/
passing in sparse graphs

INPUT GRAPH
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Inductive Representation Learning on Large Graphs

Node Neighborhood Sampling

Our approach so far:
» All the neighbors are used for message passing

» Problem: Dense/large graphs, high-degree
nodes

ye
TARGET NODE .4‘ ...................... .

oy
INPUTGRAPH T e .

__ New Idea: (Randomly) determine a node’s
Zzex\nNeighborhood for message passing
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https://arxiv.org/pdf/1706.02216.pdf

Neighborhood Sampling Example

For example, we can randomly choose 2
neighbors to pass messages

» Only nodes B and D will pass message to 4

“““““““““““““ .
&
TARGET NODE "‘ ‘< ...... ‘
A
4.
a -
A B2
INPUT GRAPH ‘
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Neighborhood Sampling Example

Next time when we compute the embeddings,
we can sample different neighbors

» Only nodes C and D will pass message to A

TARGET NODE

@
@
® « N © 4-.:: ............... E
‘®
o<y
INPUTGRAPH T T ‘
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Neighborhood Sampling Example

In expectation, we can get embeddings similar to the
case where all the neighbors are used

» Benefits: Greatly reduce computational cost
» And in practice it works great!

"""""""""""""" A
.
ARGET NODE P 4“.
9 ®
5" @
< € @ ..... 4‘.‘ ........
‘ ‘ . N, ...... ‘
- B
N
INPUTGRAPH . . e ‘
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General Framework

5 main issues

2)

* A single GNN layer: Aggregation and Message
- Layer connectivity: Stacking (3)

 Graph manipulations(augmentation) @
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LEARNING WITH GNNS

169
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A General GNN Framework

TARGET NODE

l (5) Learning objective

INPUT GRAPH

How do we train a GNN?
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GNN Training Pipeline

So far what we have covered

Input Graph
Graph Neural
Network
) :
L.
s

Node

embeddings

Evaluation
metrics

N

‘| Prediction

head

» Predictions

Labels

------------------------------------------------------------------------------------------

Output of a GNN: set of node embeddings
{h,(,L),Vv € G}

N

Loss
function

171




GNN Prediction Heads

ldea: Different task levels require different

Node-level
prediction

Grap_h-l_evel
prediction

172




GNN Training Pipeline (1)

Evaluation
metrics
Input Graph Node
Graph Neural embeddings . ............................... . /\
Network [l : [predicti
% — f FTECICHON Lot predictions | | Labels
. N [| [l head :
/ %‘.z.“j&. [l/ [l [l ................................. \/
PPPPPPPPPP ooo Loss
] oo function
(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks
173
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Prediction Heads: Node-level

Node-level prediction: We can directly make
prediction using node embeddings

» After GNN computation, we have d-dim node
embeddings: {h" € R%, vv € G}
» Suppose we want to make k-way prediction

» Classification: classify among k categories
» Regression: regress on k targets

19= Headpoge(h{”) = W R

output of e W) € R¥*4 : We map node embeddings from h{"
gaafier € R% to J,, € R¥ so that we can compute the loss

174
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Prediction Heads: Edge-level

Edge-level prediction: Make prediction using pairs of
node embeddings

» Suppose we want to make k-way prediction
L) (L
Vuv = Headegge (hy”, hiP)

(@225 What are the options for Headegge (h'., h,(,L))?m

X/ University of Kurdistan
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Prediction Heads: Edge-level

> Options for Headegge (hy’, hi):

(1) Concatenation + Linear
» We have seen this in graph attention

Concatenate Linear o
| o el Line: S
hg—l) hl()l—l)
> YVup = Linear(Concat(h,(f), h,(,L)))

» Here Linear(-) will map 2d-dimensional
embeddings (since we concatenated embeddings)
to k-dim embeddings (k-way prediction)
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Prediction Heads: Edge-level

Options for Headegge (h”, h{"):
(2) Dot product

~ L L
> Yuy = (hy)hy?
» This approach only applies to 1-way prediction (e.g.,
link prediction: predict the existence of an edge)
» Applying to k-way prediction:
> Similar to multi-head attention: W, ..., W&) trainable
Viw = ()T WDhy?
Py = ()T WO h?
Yuw = Concat(ygv)' 'yl(,ll;)) € R”

177
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Prediction Heads: Graph-level

Graph-level prediction: Make prediction using all the
node embeddings in our graph

» Suppose we want to make k-way prediction

> 9 = Headgrapn ({h(L) € R%, Vv € G))

Headgr‘aph() |S Slmllarto .....................

(2) Aggregation

:Awﬁ:,%, AGG( ) |n a GNN |ayer| .%¢¢ (1) Message -
oAy University of Kurdistan o ®




Prediction Heads: Graph-level

Options for Headgraph({hf,” € R%, Vv € G))
» (1) Global mean pooling
9. = Mean({h!*) € R, vv € G})
» (2) Global max pooling
y. = Max({h'¥ € R?, vv € G})
» (3) Global sum pooling
9. = Sum({h” € R%, vv € G})
» These options work great for small graphs
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GNN Training Pipeline (2)

(2) Where does ground-truth come from?
- Supervised labels

- Unsupervised signals Evaluation
metrics
Input Graph Node
Graph Neural embeddings :
Network E
| [l Prediction o
- N > ~ Predictions Labels |:
A 8 o oll[ [__head [ =
‘ A I
PPPPPPPPPP ceec * Loss

function
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Supervised vs Unsupervised

» Supervised learning on graphs
» Labels come from external sources
» E.qg., predict drug likeness of a molecular graph
» Unsupervised learning on graphs
» Signhals come from graphs themselves
» E.g., link prediction: predict if two nodes are connected
» Sometimes the differences are blurry

» We still have “supervision” in unsupervised learning
» E.g., train a GNN to predict node clustering coefficient

» An alternative name for “unsupervised” is “self-
supervised”
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Supervised Labels on Graphs

» Supervised labels come from the specific
use cases. For example:

» Node labels y,,: in a citation network, which
subject area does a node belong to

» Edge labels y,,,: in a transaction network,
whether an edge is dishonest

» Graph labels y.: among molecular graphs, the
drug likeness of graphs
» Advice: Reduce your task to node / edge /
graph labels, since they are easy to work with

» E.g., we knew some nodes form a cluster. We can
treat the cluster that a node belongs to as a node
label
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Unsupervised Signhals on Graphs

» The problem: sometimes we only have a graph,
without any external labels

» The solution: “self-supervised learning”, we can
find supervision signals within the graph.
For example, we can let GNN predict the following:

» Node-level y,. Node statistics: such as clustering
coefficient, PageRank, ...

» Edge-level y,,,,. Link prediction: hide the edge between
two nodes, predict if there should be a link

» Graph-level y.. Graph statistics: for example, predict if
two graphs are isomorphic

These tasks do not require any external labels!
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GNN Training Pipeline (3)

Input
Graph

PPPPPPPPPP

Graph
Neural
Network

Node
embeddings

[
)
I I¢0

metrics

Evaluation

N

‘| Prediction

head

Predictions

Labels

Classification loss
Regression loss

Loss
function
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Settings for GNN Training

» The setting: We have N data points
» Each data

> Node-
» Edge-

eve

eve

point can be a node/edge/graph

. prediction ?ff), label yff)

. prediction 3, label y{
(i)

» Graph-level: prediction y ., label yg)

> We will use prediction @, label y® to refer
predictions at all levels

185



Classification or Regression

> Classification: labels y® with discrete value

» E.g., Node classification: which category does a
node belong to

> Regression: labels y(© with continuous
value

» E.g., predict the drug likeness of a molecular
graph

» GNNs can be applied to both settings

> Differences: loss function & evaluation
metrics
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Classification Loss

Cross entropy (CE) is a very common loss function
In classification

» K-way prediction for i-th d?ta point: . . oia point

) =), ¥ 1080
/= j-th class

where: Label Prediction

yW e REZ one-hot Iabel encoding
yWe RX = prediction after Softmax(-)

E.g.

» Total loss over all N training examples
N . .
Loss= Y  CE(y®3®)

ledi=1 187




Regression LOSS

» For regression tasks we often use Mean

Squared Error (MSE) a.k.a. L2 loss
» K-way regression for data point (i):

. . K '
MSE(y®,y®) = z - OY-
]

=1
W 14 23]10]05]06

y® ¢ R¥ = Real valued vector of targets
yWe R¥ = Real valued vector of predictions

=W 05 | 25| 20 03 05

» Total loss over all N training examples

N
Loss = » MSE(y®,5®)

X7 University of Kurdistan =1
TSty of WO, *

)2 i-th data point
j-th target

where:
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GNN Training Pipeline (4)

(4) How do we measure the success of a GNN?

= ACCUraCy i
- ROC AUC )
Evaluation
metrics
Input Graph Node
Graph Neural embeddings
Network —
. [| Prediction _—
— — > » Predictions Labels
A ] [| [l head
PPPPPPPPPP coec " Loss
function
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Evaluation Metrics: Regression

» We use standard evaluation metrics for GNN

» In practice we will use sklearn for implementation
» Suppose we make predictions for N data points

» Evaluate regression tasks on graphs:
» Root mean square error (RMSE)

2"’ (y® —y))2

\ =1 N
» Mean absolute error (MAE)
Iiv=1|y(l) - f’(l)l
N

X/ University of Kurdistan
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https://scikit-learn.org/stable/modules/model_evaluation.html

Evaluation Metrics: Classification

» Evaluate classification tasks on graphs:

» (1) Multi-class classification

» We simply report the accuracy
1[argmax(?(i)) = y(i)]
N
» (2) Binary classification
» Metrics sensitive to classification threshold
» Accuracy

> Precision / Recall

» If the range of prediction is [0,1], we will use 0.5 as
threshold

» Metric Agnostic to classification threshold
» ROC AUC

X7 University of Kurdistan
"Sity of WX .
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Metrics for Binary Classification

. TP+TN TP+TN
> Accuracy: _
TP+TN+FP+FN  |Dataset|
> Precision (P):
TP+FP . |
Confusion matrix
Actually Actually
> Reca” (R) Positive (1) | Negative (0)
e : True False
Predicted - 113
Positive (1) Positives Positives
(TPs) (FPs)
: —ZP*R : False True
> Fl_SC O re . P+R Nzrea(::\(‘;tee(do) Negatives Negatives
i (FNs) (TNs)
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(4) Evaluation Metrics

» ROC Curve: Captures the tradeoff in TPR
and FPR as the classification threshold is
varied for a binary classifier.

TPR = Recall = ——
- T TP YN
TPRE 1 S e FP
Eo. 7 —— ProteaSMM-i FPR =
FP + TN

Note: the dashed line represents

oL performance of a random classifier
0 0.2 0.4 . . 1

- 06 0.8
“alse positive rath P R

Fthiiversity of Kurdistan
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic

(4) Evaluation Metrics

! —

—— NetChop C-term 3.0

— TAP + ProteaSMM-i
ProteaSMM-i

Wikipedia

1 1 1 | 1 I 1
0 0.2 0.4 (] 6 0.8 1
False positiv

» ROC AUC: Area under the ROC Curve.

» Intuition: The probability that a classifier will rank a
randomly chosen positive instance higher than a
randomly chosen negative one

194
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GNN Training Pipeline (5)

Evaluation
metrics
Input Graph Node
Graph Neural embeddings /\
Network —
[l Prediction o
— o — > »| Predictions Labels
% . q/ I head
0:0
{ g \/
REA NI
““““““““““ Loss
function

(5) How do we split our dataset
into train / validation / test set?

PPPPPPPPPP
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Dataset Split: Fixed/Random Split

» Fixed split: We will split our dataset once

» Training set: used for optimizing GNN
parameters

» Validation set: develop model/hyperparameters

» Test set: held out until we report final
performance

» Random split: we will randomly split our
dataset into training/validation/test

» We report average performance over different
random seeds

X/ University of Kurdistan
TSty of WO, *
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Wwhy Splitting Graphs is Special

» Suppose we want to split an image dataset
» Image classification: Each data point is an
iImage
» Here data points are independent
» Image 5 will not affect our prediction on image 1

=
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Wwhy Splitting Graphs is Special

» Splitting a graph dataset is different!
» Node classification: Each data point is a node

» Here data points are NOT independent
» Node 5 will affect our prediction on node 1, because
It will participate in message passing - affect node 1's
embedding
Training
Validation

Test

5,

@)

2% ey
g 58

What are our options?

University of Kurdistan
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Why Splitting Graphs is Special

Solution 1 (Transductive setting): The input graph
can be observed in all the dataset splits (training,
validation and test set).

» We will only split the (node) labels

» At training time, we compute embeddings using the
entire graph, and train using node 1&2’s labels

» At validation time, we compute embeddings using the
entire graph, and evaluate on node 3&4’s labels

Training
Validation

Test
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Why Splitting Graphs is Special

Solution 2 (Inductive setting): We break the edges
between splits to get multiple graphs

» Now we have 3 graphs that are independent. Node 5
will not affect our prediction on node 1 any more

» At training time, we compute embeddings using the
graph over node 1&2, and train using node 1&2’s
labels

» At validation time, we compute embeddings using the
graph over node 3&4, and evaluate on node 3&4’s
labels

Training
Validation

Test
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Transductive/Inductive Settings

» Transductive setting: training/validation/test sets
are on the same graph
» The dataset consists of one graph

» The entire graph can be observed in all dataset
splits, we only split the labels

» Only applicable to node/edge prediction tasks

» Inductive setting: training/validation/test sets are
on different graphs
» The dataset consists of multiple graphs

» Each split can only observe the graph(s) within the
split. A successful model should generalize to
unseen graphs

» Applicable to node/edge/graph tasks
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Example: Node Classification

= Transductive node classification

= All the splits can observe the entire graph structure,
but can only observe the labels of their respective nodes

Training
Validation

Test

Inductive node cIaSS|f|cat|on
= Suppose we have a dataset of 3 graphs
: Each spllt contams an mdependent graph

Training
Validation

Test
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Example: Graph Classification

» Only the inductive setting Is well defined
for graph classification

» Because we have to test on unseen graphs

» Suppose we have a dataset of 5 graphs. Each
split will contain independent graph(s).

- .
= = . .
INPUT GRAPH INPUT GRAPH INPUT GRAPH = =  INPUTGRAPH . = INPUT GRAPH

. =
BN E N R NN R R RN AN N E NN N N EE N R N N E N R N E R N AR R AN AEEEEEEAEEEENEAEEEEEEEEEEEEEEY L ssmasssssssssssssssssssssssssy  SEEEEEEEEEssEEEEssssEEsssmmnad




Example: Link Prediction

» Goal of link prediction: predict missing edges
» Setting up link prediction is tricky:
» Link prediction is an unsupervised/self-supervised

task. We need to create the labels and dataset splits
on our own

» Concretely, we need to hide some edges from the
GNN and the let the GNN predict if the edges exist

VAV Vi

Original graph Input graph to GNN Predictions made by GNN
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Setting up Link Prediction

Message edges

lllllll >

D Supervision edges

Original graph

For link prediction, we will split edges twice

Step 1: Assign 2 types of edges in the original graph
» Message edges: Used for GNN message passing
» Supervision edges: Use for computing objectives
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Setting up Link Prediction

» Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

» Suppose we have a dataset of 3 graphs. Each
iInductive split will contain an independent
graph

.......................................................................................................................................
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Setting up Link Prediction

» Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

» Suppose we have a dataset of 3 graphs. Each
Inductive split will contain an independent graph

» In train or val or test set, each graph will have 2
types of edges: message edges + supervision
edges

> SuperV|S|on edges are not the input to GNN
Message Pl :
edge

Supervision

Validation set | Test set

III: 207



Setting up Link Prediction

Option 2: Transductive link prediction split:

» This Is the default setting when people talk
about link prediction

» Suppose we have a dataset of 1 graph

208




Setting up Link Prediction

Option 2: Transductive link prediction split:

» By definition of “transductive”, the entire graph
can be observed in all dataset splits
» But since edges are both part of graph structure

and the supervision, we need to hold out
validation/test edges

» To train the training set, we further need to hold out
supervision edges for the training set
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Setting up Link Prediction

Option 2: Transductive link prediction split:

@
(1) At training time: (2) At validation time: (3) At test time:
Use training message Use training message Use training message
edges to predict edges & training edges & training
training supervision supervision edges to supervision edges &
edges predict validation validation edges to

edges predict test edges

After training, supervision edges are known to GNN. Therefore, an ideal model
should use supervision edges in message passing at validation time.

7%\ The same applies to the test time. 210




GNN Training Pipeline

PPPPPPPPPP

Evaluation

metrics

Input Graph Node

Graph Neural embeddings /\

Network —
[l Prediction -
— o — > —| Predictions Labels
] [| : [l head
PPPPPPPPPP ceee Loss

function

Implementation resources:
a0 hGym further implements the full pipeline to facilitate GNN design

@)
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https://github.com/snap-stanford/GraphGym

Summary

» We introduce a general GNN framework:

» GNN Layer:
» Transformation + Aggregation
» Classic GNN layers: GCN, GraphSAGE, GAT
» Layer connectivity:
» The over-smoothing problem
» Solution: skip connections
» Graph Augmentation:
» Feature augmentation
» Structure augmentation
» Learning Objectives
» The full training pipeline of a GNN

X7 University of Kurdistan
"Sity of WX .

212



» Questions




