
Department of Computer Engineering

University of Kurdistan

Complex Networks

Graph Machine Learning

By: Dr. Alireza Abdollahpouri
(Almost all the slides are taken from Stanford’s CS224W)

2

Traditional machine learning relies on pre-defined features

from isolated data points, while graph machine learning

leverages both features and relations between entities to

capture complex dependencies in networked data

Graph Machine Learning

3

CNN

RNN

Modern deep learning toolbox is designed

for simple sequences & grids

Why Graph Machine Learning?

4

Not everything

can be represented as

a sequence or a grid

5

Networks are complex

Why Is It Hard?

6

?

7

Deep Learning in Graphs

8

Key point: “Representation Learning”

(Supervised) Machine Learning Lifecycle: This feature, that feature.

Every single time!

Degree, PageRank,

graphlets, …

9

To learn a low-dimensional dense vector that encodes node

structures and attributes, enables efficient feature learning for

graph-structured data

Deep graph representation learning

Example

10

OutputInput

 Zachary’s Karate Club Network:

11

Diverse level of tasks

D

G
C

H

E

F

Node features

B Graph features
Link features

A

∈ ℝ𝐷

 Design features for nodes/links/graphs
 Obtain features for all training data

∈ ℝ𝐷

∈ ℝ𝐷

Traditional ML Pipeline

12

Machine Learning with Networks

 Node classification
 Predict a type of a given node (categorizing users/items)

 Link prediction
 Predict whether two nodes are linked (knowledge graph

completion, Friend recommendation)

 Community detection
 Identify densely linked clusters of nodes

 Network similarity
 How similar are two (sub)networks

 Graph Classification
 Categorize different graphs(Molecule property prediction)

13

14

Example: Academic Graph Mining

• Input:

– an academic graph (papers, citation links, …)

• Applications:

– recommendation, tagging, disambiguation, …

15

• How to represent a node in a graph to help downstream

tasks?

• Node Embedding!

Question

∈ ℝ𝐷

16

Examples of

Node-Level Tasks

Example: Node Classification

? ?

?
?

?

Machine

Learning

17

Example: Node Classification

18

Classifying the

function of

proteins in the

interactome!

19

Example of “Node-level” ML

20

ex) Protein Folding

• protein= sequence of amino acid

• 3d structure

• interact with each other

•Goal: predict 3D structure based on amino acid sequence

•key idea of AlphaFold: “spatial graph”

• (1) node: amino acids

• (2) edges: proximity between nodes

Example of “Node-level” ML

21

Example of “Node-level” ML

22

Examples of

Edge-Level Tasks

Example: Link Prediction

Machine

Learning

23

?

?

?

x

Example: Link Prediction

24

Content

recommendation

is link prediction! ?

25

ex) Recommender Systems

•Formulation

• (1) node: user & items

• (2) edge: user & item interaction

• Goal: “Recommend item to users”

• (predict whether 2 nodes are related)

Example of “Edge-level” ML

26

Example of “Edge-level” ML

27

ex) Drug Side Effects

Background: many patients & many drugs

•Goal: predict adverse side effects of “pair of drugs”

• Formulation

• (1) node: drugs & proteins

• (2) edges: interactions

• drug-protein interaction

• protein-protein interaction

• drug-drug interaction

Example of “Edge-level” ML

28

Example of “Edge-level” ML

29

Example of

A SubGraph Task

30

Google Maps: traffic prediction

with GNN

Example of “Subgraph-level” ML

Predicting Time of Arrival with GNNS

Used in Google Maps

Traffic Prediction with GNNs

31

32

Google Maps : traffic prediction with GNN

33

Examples of

Graph-Level Tasks

34

Example of “Graph-level” ML

35

ex) Drug Discovery Permalink

•Antibiotics = small molecular graphs

•Formulation

• (1) node: atoms

• (2) edges: chemical bonds

•(Q) Which molecules should be prioritized?

•ex) graph classification model

• predict promising molecules among candidates

Example of “Graph-level” ML

https://seunghan96.github.io/gnn/gnn1/#ex-drug-discovery

36

Generate novel molecules (new structure)

• with “high drug likeness”

• with “desirable properties”

Example of “Graph-level” ML

Shallow embedding

• Matrix factorization-based approaches

• Random Walk-Based (Deepwalk- Node2vec)

Deep embedding

• Graph Neural Networks (GCN- GAT- GraphSAGE)

• Autoencoder-Based Methods

• Temporal/Dynamic Graph Embeddings (TGAT)

• Heterogeneous Graph Embeddings (HAN, Metapath2vec)

• Graph Transformers (Graphormer, GTN)

37

Graph Embedding Methods

38

Shallow Embedding

Need to define!

in the original network

Similarity of the embedding

Embedding nodes

Goal: similarity(𝑢, 𝑣) ≈ 𝑧𝑢
𝑇 ∙ 𝑧𝑣

39

∈ ℝ𝐷

Learning node embeddings

40

1. Define an encoder ENC that maps nodes to low

dimensional spaces

2. Define a node similarity function (i.e., a measure of

similarity in the original network).

3. Decoder 𝐃𝐄𝐂 maps from embeddings to the similarity score

4. Optimize the parameters of the encoder so that we

minimize a loss function L that looks (roughly) like:

𝐿 =

𝑢,𝑣 ∈ 𝑉

(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) − 𝑧𝑢
𝑇 ∙ 𝑧𝑣)

2

Dimension/size of

embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

𝐙 =

Each node is assigned a single d-dimensional vector

Learn 𝑉 × 𝑑 embedding matrix 𝑍: each column i is the

embedding 𝑧𝑖 of node i

Shallow embeddings(*)

(*) As opposed to deep learning in graphs (GNN embeddings)
41

Shallow embeddings

42

Z
𝑧𝑣

𝐸𝑁𝐶 𝑣 = 𝑍𝑣 = 𝑍 𝐼𝑣

𝑣
One-hot or

indicator vector, all

0s but position 𝑣

𝐼𝑣

Encoder is just an embedding lookup

0

0

1

0

𝑁 × 1𝑑 × 𝑁

𝑣

Encoder + Decoder Framework

 Shallow encoder: Embedding lookup

 Parameters to optimize: 𝐙which contains node
embeddings for all nodes 𝑢 ∈ 𝑉

 We will cover deep encoders in the GNNs

 Decoder: based on node similarity.

 Objective: maximize 𝑧𝑢
𝑇 ∙ 𝑧𝑣 for node pairs (𝑢, 𝑣)

that are similar

Framework Summary

43

• Key choice of methods is how they define node
similarity.

• Should two nodes have a similar embedding if
they…
 are linked?

 share neighbors?

 have similar “structural roles”?

How to define node similarity

44

Adjacency Matrix

 Simplest node similarity: Nodes 𝑢, 𝑣 are similar

if they are connected by an edge

 This means: z𝑣
Τz𝑢 = 𝐴𝑢,𝑣

which is the (𝑢, 𝑣) entry of the graph adjacency

matrix 𝐴

 Therefore, 𝑍𝑇𝑍 = 𝐴

1

4

3

2

×

𝒁𝑇 𝒁

𝐳𝑢 𝐳𝑣






















0111

1000

1001

1010

A

45

z2
Τz4 ≈ 𝟏

Adjacency-based approach

 The embedding dimension 𝑑 (number of rows in 𝒁)

is much smaller than number of nodes 𝑛. (𝑑 << 𝑛)

 Inner product decoder with node similarity defined

by edge connectivity is equivalent to matrix

factorization of 𝐴.

 Exact factorization 𝐴 = 𝒁𝑻𝒁 is generally not possible

 Matrix decomposition (for example, SVD

decomposition)
1. Scalability issues

2. Produced matrices that are very dense

46

Adjacency-based approach

 However, we can learn 𝒁 approximately

 Objective:min
𝐙

∥ A − 𝒁𝑇𝒁 ∥2

 We optimize 𝒁 such that it minimizes the L2 norm

(Frobenius norm) of 𝐀 − 𝒁𝑻𝒁

 We used softmax instead of L2. But the goal to

approximate 𝐀 with 𝒁𝑇𝒁 is the same.

How: stochastic gradient descent

47

48

𝐿 = 𝑢,𝑣 ∈ 𝑉 × 𝑉 ||𝐴𝑢,𝑣 - 𝑍𝑢
𝑇 ∙ 𝑍𝑣 ||

2

sum over all

node pairs

The loss that what we want to minimize

(possibly weighted) adjacency

matrix for the graph

embedding

similarity

Adjacency-based approach

RANDOM -WALK BASED

EMBEDDINGS

49

50

Node Similarity Measure

51

Words = Nodes

Sentences = Paths, Random walks

How?

Random Walk Strategy

52

Random Walk Strategy

To generate node representations by simulating random walks

on a graph, capturing structural and relational patterns in a low-

dimensional space.

1

4

3

2

5
6

7

10
9

8

12

Given a graph and a starting point, we select
a neighbor of it at random, and move to this
neighbor; then we select a neighbor of this
point at random, and move to it, etc.

The (random) sequence of points visited
this way is a random walk on the graph.

Step 1
Step 2

Step 3 Step 4

Step 5

Random Walk

11

53

Random-walk embeddings

54

probability that i and j
co-occur on a random

walk over the network
𝑧𝑖 ∙ 𝑧𝑗 ≈

Random-walk Embeddings

55

1. Estimate probability of

visiting node 𝑣 on a

random walk starting

from node 𝑢 using some

random walk strategy R.

2. Optimize embeddings to

encode these random

walk statistics.

Why Random Walks?

56

1. Expressivity: Flexible stochastic definition of

node similarity that incorporates both local and

higher-order neighborhood information. Idea: if

random walk starting from node 𝑢 visits 𝑣 with

high probability, 𝑢 and 𝑣 are similar (high-order

multi-hop information)

2. Efficiency: Do not need to consider all node

pairs when training; only need to consider pairs

that co-occur on random walks.

Unsupervised Feature Learning

 Intuition: Find embedding of nodes in

𝑑-dimensional space that preserves similarity

 Idea: Learn node embedding such that nearby

nodes are close together in the network

 Given a node 𝑢, how do we define nearby

nodes?

 𝑁𝑅 𝑢 : neighbourhood of 𝑢 obtained by some

random walk strategy 𝑅

57

Random Walk Optimization

1. Run short fixed-length random walks starting from

each node 𝑢 in the graph using some random walk

strategy R.

2. For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset* of nodes

visited on random walks starting from 𝑢.

3. Optimize embeddings according to: Given node 𝑢,

predict its neighbors 𝑁R(𝑢).

arg max
𝑧

𝑢 ∈𝑉

log P(𝑁R(𝑢)| 𝐳𝑢)

*𝑁𝑅(𝑢) can have repeat elements since nodes can be visited multiple times on random

walks

Maximum

likelihood

objective

58

Random Walk Optimization

Intuition: Optimize embeddings 𝑧𝑢 to minimize the negative log-
likelihood of random walk neighborhoods 𝑁(𝑢).

Parameterize 𝑃(𝑣|z𝑢) using softmax:

Why softmax?

We want node 𝑣 to be most similar

to node 𝑢 (out of all nodes 𝑛).

Intuition: 𝑖 exp 𝑥𝑖 ≈ max
𝑖

exp(𝑥𝑖)
𝑃 𝑣 𝐳𝑢 =

exp(𝐳𝑢
T𝐳𝑣)

 𝑛∈𝑉 exp(𝐳𝑢
T𝐳𝑛)

argmin
𝑧

ℒ =

𝑢∈𝑉

𝑣∈𝑁𝑅(𝑢)

−log(𝑃(𝑣|𝐳𝑢))

Equivalently,

59

Random Walk Optimization

Putting it all together:

sum over all
nodes 𝑢

sum over nodes 𝑣
seen on random

walks starting from 𝑢

predicted probability of 𝑢
and 𝑣 co-occuring on

random walk

Optimizing random walk embeddings = Finding embeddings z𝑢 that minimize Loss

ℒ =

𝑢∈𝑉

𝑣∈𝑁𝑅(𝑢)

− log(
exp(𝐳𝑢

T𝐳𝑣)

 𝑛∈𝑉 exp(𝐳𝑢
T𝐳𝑛)

)

60

61

 DeepWalk just runs fixed-length, unbiased

random walks starting from each node

 Node2vec: biased random walks that can

trade-off between local and global views of the

network

How should we randomly walk?

62

Short random walks = sentences

Short truncated random walks are sentences in

an artificial language

DeepWalk

63

DeepWalk

Node2vec: Biased Walks

Idea: use flexible, biased random walks that can

trade off between local and global views of the

network (Grover and Leskovec, 2016).

64

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Node2vec: Biased Walks

Two classic strategies to define a neighborhood

𝑁𝑅 𝑢 of a given node 𝑢:

65

𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view

Global macroscopic view

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

Biased 2nd Order Random Walks

66

𝑡

x1

𝒗

x2

Closer to 𝒕

Farther from 𝒕

Walker from t, traversed (𝑡, 𝑣) and is now in 𝑣, where

to go next?

How much far away from 𝑡? Only three possible choices:

 Farther distance (distance =2)

 Same distance (distance = 1)

 Back to t (distance = 0)

Same distance to 𝒕

Interpolating BFS and DFS

Biased random walk 𝑅 that given a node 𝑢 generates

neighborhood 𝑁𝑅 𝑢

 Two parameters:
 Return parameter 𝑝:

 Return to the previous node

 In-out parameter 𝑞:

 Moving outwards (DFS) vs. inwards (BFS)

 Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

 Specify how a single step of biased random walk

is performed

 Random walk is then just a sequence of these steps.

67

One step of the biased random walk

68

Same distance to 𝒕

𝑡

x1

𝑣

x2

Closer to 𝒕

Farther from 𝒕

At 𝑣 from 𝑡, where to

go next?

1

1/𝑞
1/𝑝

 1 to node with same distance

 1/q node further apart

 1/p back to t

(unnormalized probabilities)

BFS-like walk: Low value of 𝑝
DFS-like walk: Low value of 𝑞

Define the random walk by specifying

the walk transition probabilities on

edges adjacent to the current node 𝑣:

One step of the biased random walk

69

𝑣 →
𝑡
s2

s3

s4

1/𝑝
1
1/𝑞
1/𝑞

Unnormalized

transition prob.

segmented based

on distance from 𝑡

1

1/𝑞

1/𝑝t

s2

𝑣

s3

𝑢 s4

1/𝑞
Target Prob. Dist. (𝑺𝒊, 𝒕)

0

1

2

2

At 𝑣 from 𝑆1

𝑁𝑅(𝑣) are the nodes visited by the biased walk

70

node2vec tend to fail in

structural equivalence tasks.

Node2vec limitation

GRAPH NEURAL NEWTORKS

71

Idea: Convolutional Networks

CNN on an image:

72

Can we generalize convolutions beyond simple lattices?
Leverage node features/attributes (e.g., text, images)

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

What if our data looks like this?

Why is it hard?

73

vs.

Networks Images

Text

Graphs are far more complex!

 No fixed notion of (spatial) locality or sliding window on the graph
 No fixed node ordering or reference point

 Often dynamic and have multimodal features

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

Graphs look like this:

arbitrary size and complex

topological structure

A Naïve Approach

 Join adjacency matrix and features

 Feed them into a deep neural net:

 Issues with this idea:

 Issues with this idea:

 𝑂(|𝑉|) parameters

 Not applicable to graphs of different sizes

 Sensitive to node ordering
74

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters

• No inductive learning possible

?A

C

B

D

E

[A , X]

Permutation Invariance

 Graph does not have a canonical order of the nodes!

 We can have many different order plans.

75

A
C

B

E
F

D

A

B

C
D

E

F

Node features 𝑋1 Adjacency matrix 𝐴1

A
B
C
D
E
F

A B C D E FOrder plan 1

Permutation Invariance

 Graph does not have a canonical order of the nodes!

 We can have many different order plans.

76

E
D

F

B
A

C

A

B

C
D

E

F

Node features 𝑋2 Adjacency matrix 𝐴2

A
B
C
D
E
F

A B C D E FOrder plan 2

77

Graph and node representations
should be the same for Order plan 1

and Order plan 2

Permutation Invariance

Invariance and Equivariance

 Permutation-invariant

𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

 Permutation-equivariant

𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋

78

Permute the input, the

output stays the same.

Permute the input, output also

permutes accordingly.

Graph Neural Network Overview

Are other neural network architectures, e.g.,

MLPs, permutation invariant / equivariant?

 No

79

Switching the order of the input
leads to different outputs!

Graph Neural Network Overview

Are other neural network architectures, e.g.,

MLPs, permutation invariant / equivariant?

 No.

80

This explains why the naïve MLP

approach fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters

• No inductive learning possible

?A

C

B

D

E

[A , X]

Graph Neural Network Overview

 Graph neural networks consist of multiple

permutation equivariant/invariant functions.

81

[Bronstein, ICLR 2021

Graph Convolutional Networks

Idea: The neighborhood of a node defines a

computation graph

82

Determine node
computation graph

Propagate and
transform information

𝑖

Learn how to propagate information across

the graph to compute node features

Idea: Aggregate Neighbors

Key idea: Generate node embeddings based

on local network neighborhoods

83

Idea: Aggregate Neighbors

 Intuition: Nodes aggregate information from

their neighbors using neural networks

84

Neural networks

Idea: Aggregate Neighbors

 Intuition: Network neighborhood defines a

computation graph

85

Every node defines a computation
graph based on its neighborhood!

Deep Model: Many Layers

 Model can be of arbitrary depth:

 Nodes have embeddings at each layer

 Layer-0 embedding of node 𝑣 is its input feature, 𝑥𝑣
 Layer-𝑘 embedding gets information from nodes

that are 𝑘 hops away

86

Layer-2

Layer-1
Layer-0

Neighborhood Aggregation

 Neighborhood aggregation: Key distinctions are

in how different approaches aggregate

information across the layers

87

?

?

?

?

What is in the box?

Neighborhood Aggregation

 Basic approach: Average information from

neighbors and apply a neural network

88

(1) average messages from
neighbors

(2) apply neural network

The Math: Deep Encoder

 Basic approach: Average neighbor messages

and apply a neural network

89

Average of neighbor’s
previous layer embeddings

Total number
of layers

Initial 0-th layer embeddings
are equal to node features

Embedding after K
layers of neighborhood

aggregation

Non-linearity
(e.g., ReLU)

embedding of
𝑣 at layer 𝑘

h𝑣
0 = x𝑣

z𝑣 = h𝑣
(𝐾)

h𝑣
(𝑘+1)

= 𝜎(W𝑘

𝑢∈N(𝑣)

h𝑢
(𝑘)

N(𝑣)
+ B𝑘h𝑣

(𝑘)
), ∀𝑘 ∈ {0, … , 𝐾 − 1}

Notice summation is a permutation

invariant pooling/aggregation.

Model Parameters

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ𝑣
𝑘: the hidden representation of node 𝑣 at layer 𝑘

 𝑊𝑘: weight matrix for neighborhood aggregation

 𝐵𝑘: weight matrix for transforming hidden vector of self
90

Trainable weight matrices
(i.e., what we learn)

Final node embedding

h𝑣
(0)

= x𝑣

z𝑣 = h𝑣
(𝐾)

h𝑣
(𝑘+1)

= 𝜎(W𝑘

𝑢∈N(𝑣)

h𝑢
(𝑘)

N(𝑣)
+ B𝑘h𝑣

(𝑘)
), ∀𝑘 ∈ {0. . 𝐾 − 1}

weight matrices

are shared

GCN: Invariance and Equivariance

What are the invariance and equivariance

properties for a GCN?

 Given a node, the GCN that computes its

embedding is permutation invariant

91

A
C

B

E
F

D
Target Node

D A

D

B

C

Shared NN weights

Average of neighbor’s previous layer
embeddings - Permutation invariant

𝒛𝐴

Training the Model

How do we train the GCN to
generate embeddings?

Need to define a loss function on the embeddings.

92

How to Train A GNN

 Node embedding 𝒛𝑣 is a function of input graph

 Supervised setting: We want to minimize loss ℒ:
min
Θ

ℒ(𝒚, 𝑓Θ 𝒛𝑣)

 𝒚: node label

 ℒ could be L2 if 𝒚 is real number, or cross entropy if 𝒚 is
categorical (loss in Maximum Likelihood Estimation)
 Cross entropy loss (CE):

 CE 𝒚, 𝑓 𝒙 = − 𝑖=1
𝐶 (𝑦𝑖 log 𝑓Θ(𝑥)𝑖)

 𝑦𝑖 and 𝑓Θ(𝑥)𝑖 are the actual and predicted values of the 𝑖-th class

 Intuition: the lower the loss, the closer the prediction is to one-hot

 Unsupervised setting:
 No node label available

 Use the graph structure as the supervision!

93

Unsupervised Training

One possible idea: “Similar” nodes have similar

embeddings:

𝐦𝐢𝐧𝚯 ℒ =

𝑧𝑢,𝑧𝑣

CE(𝑦𝑢,𝑣 , DEC 𝑧𝑢, 𝑧𝑣)

 where 𝑦𝑢,𝑣 = 1 when node 𝑢 and 𝑣 are similar

 𝑧𝑢 = 𝑓Θ 𝑢 and DEC(⋅,⋅) is the dot product

Node similarity can be anything from embeddings,

e.g., a loss based on:

 Random walks (node2vec, DeepWalk, struc2vec)

 Matrix factorization
94

Supervised Training

Directly train the model for a supervised task

(e.g., node classification)

95

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

Supervised Training

Directly train the model for a supervised task

(e.g., node classification)

Use cross entropy loss

96

Encoder output:
node embedding

Classification
weights

Node class
labelSafe or toxic drug?

ℒ = −

𝑣∈𝑉

𝑦𝑣log(𝜎(z𝑣
T𝜃)) + 1 − 𝑦𝑣 log(1 − 𝜎 z𝑣

T𝜃)

Model Design: Overview

97

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

𝒛𝐴

Model Design: Overview

98

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

Model Design: Overview

99

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

Inductive Capability

 The same aggregation parameters are

shared for all nodes:

 The number of model parameters is sublinear in

|𝑉| and we can generalize to unseen nodes!

100

𝑊𝑘 𝐵𝑘

Inductive Capability: New Graphs

101

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z𝑢

Inductive Capability: New Nodes

102

Train with snapshot New node arrives
Generate embedding

for new node

 Many application settings constantly encounter
previously unseen nodes:

 E.g., Reddit, YouTube, Google Scholar

 Need to generate new embeddings “on the fly”

z𝑢

Summary so far

 How to build CNNs for graphs use local

neighborhood of a node

 Next: more details using a general GNN

framework

103

104

(2) Aggregation

(1) Message

GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer connectivity

(5) Learning objective

A General GNN Framework (5 main issues)

105

General Framework

• A single GNN layer: Aggregation and Message

• Layer connectivity: Stacking

• Graph manipulations(augmentation)

• Learning objectives/metrics

5 main issues

1 2

3

4

5

A SINGLE GNN LAYER

106

A GNN Layer

107

(2) Aggregation

(1) Message

GNN Layer 2

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

A Single GNN Layer

 Idea of a GNN Layer:

 Compress a set of vectors into a single vector

 Two-step process:

 (1) Message

 (2) Aggregation

108

Input node embedding 𝐡𝑣
𝑙−1

, 𝐡𝑢∈𝑁(𝑣)
𝑙−1

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡𝑣
𝑙

(2) Aggregation

(1) Message

Node 𝒗

Message Computation

(1) Message computation

 Message function:

 Intuition: Each node will create a message, which

will be sent to other nodes

 Example: A Linear layer 𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

 Multiply node features with weight matrix 𝐖 𝑙

109

(2) Aggregation

(1) Message

Node 𝒗

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1

(2) Aggregation
 Intuition: Node 𝑣 will aggregate the messages from

its neighbors 𝑢:

 Example: Sum(⋅), Mean ⋅ , or Max(⋅) aggregator

 𝐡𝑣
𝑙
= Sum({𝐦𝑢

𝑙
, 𝑢 ∈ 𝑁(𝑣)})

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙 , 𝑢 ∈ 𝑁 𝑣

Message Aggregation

110

(2) Aggregation

(1) Message

Node 𝒗

Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

 How to write this as Message + Aggregation?

111

𝐡𝑣
(𝑙)

= 𝜎 𝐖 𝑙

𝑢∈𝑁 𝑣

𝐡𝑢
𝑙−1

𝑁 𝑣

𝐡𝑣
(𝑙)

= 𝜎

𝑢∈𝑁 𝑣

𝐖 𝑙
𝐡𝑢

𝑙−1

𝑁 𝑣

Aggregation

Message

(2) Aggregation

(1) Message

Classical GNN Layers: GCN (2)

(1) Graph Convolutional Networks (GCN)

 Message:

 Each Neighbor: 𝐦𝑢
(𝑙)

=
1

𝑁 𝑣
𝐖 𝑙 𝐡𝑢

𝑙−1

 Aggregation:

 Sum over messages from neighbors, then apply

activation

 𝐡𝑣
𝑙
= 𝜎 Sum 𝐦𝑢

𝑙
, 𝑢 ∈ 𝑁 𝑣

112

Normalized by
node degree
(In the GCN paper they use a
slightly different normalization)

𝐡𝑣
(𝑙)

= 𝜎

𝑢∈𝑁 𝑣

𝐖 𝑙
𝐡𝑢

𝑙−1

𝑁 𝑣

(2) Aggregation

(1) Message

In GCN the input graph is

assumed to have self-edges

that are included in the

summation.

113

Classical GNN Layers: GCN

Kipf &

Welling

114

Classical GNN Layers: GraphSAGE

• A general inductive framework that efficiently generate node

embeddings for previously unseen data.

• Uniformly sample a fixed-size set of neighbors, instead of

• using full neighborhood sets

(SAmple and aggreGatE),

Classical GNN Layers: GraphSAGE

(2) GraphSAGE

 How to write this as Message + Aggregation?

 Message is computed within the AGG ⋅

 Two-stage aggregation

 Stage 1: Aggregate from node neighbors

 Stage 2: Further aggregate over the node itself

115

𝐡𝑣
(𝑙)

= 𝜎 𝐖(𝑙) ∙ CONCAT 𝐡𝑣
𝑙−1

, AGG 𝐡𝑢
𝑙−1

, ∀𝑢 ∈ 𝑁 𝑣

𝐡𝑁(𝑣)
(𝑙)

← AGG 𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝑁 𝑣

𝐡𝑣
(𝑙)

← 𝜎 𝐖(𝑙) ⋅ CONCAT(𝐡𝑣
𝑙−1

, 𝐡𝑁(𝑣)
(𝑙)

)

 Mean: Take a weighted average of neighbors

 Pool: Transform neighbor vectors and apply
symmetric vector function Mean(⋅) or Max(⋅)

 LSTM: Apply LSTM to reshuffled of neighbors

AGG =

𝑢∈𝑁(𝑣)

𝐡𝑢
(𝑙−1)

𝑁(𝑣)

GraphSAGE Neighbor Aggregation

116

AGG = Mean({MLP(𝐡𝑢
(𝑙−1)

), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝝅 𝑁 𝑣])

Message computation

Message computation

Aggregation

Aggregation

Aggregation

applied to a

random

permutation

GraphSAGE: L2 Normalization

ℓ2 Normalization:

 Optional: Apply ℓ2 normalization to 𝐡𝑣
(𝑙)

at every

layer

 𝐡𝑣
(𝑙)

←
𝐡𝑣
(𝑙)

𝐡𝑣
(𝑙)

2

∀𝑣 ∈ 𝑉 where 𝑢 2 = 𝑖 𝑢𝑖
2 (ℓ2-

norm)

 Without ℓ2 normalization, the embedding vectors have
different scales (ℓ2-norm) for vectors

 In some cases (not always), normalization of

embedding results in performance improvement

117

(3) Graph Attention Networks

 Weighting factor (importance) of the message of node 𝑢 to
node 𝑣

 In GCN and GraphSAGE:

 𝛼𝑣𝑢 =
1

𝑁 𝑣
defined explicitly based on the structural properties

of the graph (node degree)

 All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important to node 𝑣

𝐡𝑣
(𝑙)

= 𝜎(𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖
(𝑙)𝐡𝑢

(𝑙−1)
)

Classical GNN Layers: GAT (1)

118

Attention weights

(3) Graph Attention Networks

Not all node’s neighbors are equally important

 Attention is inspired by cognitive attention.

 The attention 𝜶𝒗𝒖 focuses on the important parts of the

input data and fades out the rest.

 Idea: the NN should devote more computing power on that

small but important part of the data.

 Which part of the data is more important depends on the

context and is learned through training.

𝐡𝑣
(𝑙)

= 𝜎(𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖
(𝑙)𝐡𝑢

(𝑙−1)
)

Classical GNN Layers: GAT (2)

119

Attention weights

Graph Attention Networks

Can weighting factors 𝛼𝑣𝑢 be learned?

 Goal: Specify arbitrary importance to

different neighbors of each node in the graph

 Idea: ﻿Compute embedding 𝒉𝑣
(𝑙)

of each node

in the graph following an attention strategy:

 ﻿Nodes attend over their neighborhoods’ message

 Implicitly specifying different weights to different

nodes in a neighborhood

120

Attention Mechanism (1)

Let 𝛼𝑣𝑢 be computed as a byproduct of an
attention mechanism 𝒂:

 (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖
across pairs of nodes 𝑢, 𝑣 based on their
messages:

𝑒𝑣𝑢 = 𝑎(𝐖(𝑙)𝐡𝑢
(𝑙−1)

,𝐖(𝑙)𝒉𝑣
(𝑙−1)

)
 𝒆𝒗𝒖 indicates the importance of 𝒖′𝐬 message to

node 𝒗

121

𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

𝑒𝐴𝐵

𝑒𝐴𝐵 = 𝑎(𝐖(𝑙)𝐡𝐴
(𝑙−1)

,𝐖(𝑙)𝐡𝐵
(𝑙−1)

)

Attention Mechanism (2)

 Normalize 𝑒𝑣𝑢 into the final attention weight
𝜶𝒗𝒖

 Use the softmax function, so that 𝑢∈𝑁 𝑣 𝛼𝑣𝑢 = 1:

𝛼𝑣𝑢 =
exp(𝑒𝑣𝑢)

 𝑘∈𝑁 𝑣 exp(𝑒𝑣𝑘)

 Weighted sum based on the final attention
weight 𝜶𝒗𝒖:

𝐡𝑣
(𝑙)

= 𝜎(𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖
(𝑙)𝐡𝑢

(𝑙−1)
)

122

𝛼𝐴𝐵Weighted sum using 𝛼𝐴𝐵, 𝛼𝐴𝐶, 𝛼𝐴𝐷:

𝐡𝐴
(𝑙)

= 𝜎(𝛼𝐴𝐵𝐖
(𝑙)𝐡𝐵

(𝑙−1)
+𝛼𝐴𝐶𝐖

(𝑙)𝐡𝐶
(𝑙−1)

+

𝛼𝐴𝐷𝐖
(𝑙)𝐡𝐷

(𝑙−1)
)

𝐡𝐵
(𝑙−1)

𝐡𝐶
(𝑙−1)

𝛼𝐴𝐶

𝛼𝐴𝐷

Attention Mechanism (3)

What is the form of attention mechanism 𝒂?

 The approach is agnostic to the choice of 𝑎

 E.g., use a simple single-layer neural network

 𝑎 have trainable parameters (weights in the Linear layer)

 Parameters of 𝑎 are trained jointly:

 Learn the parameters together with weight matrices (i.e.,

other parameter of the neural net 𝐖(𝑙)) in an end-to-end

fashion

123

𝑒𝐴𝐵 = 𝑎 𝐖(𝑙)𝐡𝐴
(𝑙−1)

,𝐖(𝑙)𝐡𝐵
(𝑙−1)

= Linear Concat 𝐖(𝑙)𝐡𝐴
(𝑙−1)

,𝐖(𝑙)𝐡𝐵
(𝑙−1)

𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

Concatenate Linear
𝑒𝐴𝐵

Attention Mechanism (4)

 Multi-head attention: Stabilizes the learning
process of attention mechanism
 Create multiple attention scores (each replica with

a different set of parameters):

 0utputs are aggregated:
 By concatenation or summation

 𝐡𝑣
(𝑙)

= AGG(𝐡𝑣
(𝑙)

1 , 𝐡𝑣
(𝑙)

2 , 𝐡𝑣
(𝑙)

3)

124

𝐡𝑣
(𝑙)
[1] = 𝜎(𝑢∈𝑁 𝑣 𝛼𝑣𝑢

1 𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

𝐡𝑣
(𝑙)
[2] = 𝜎(𝑢∈𝑁 𝑣 𝛼𝑣𝑢

2 𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

𝐡𝑣
(𝑙)
[3] = 𝜎(𝑢∈𝑁 𝑣 𝛼𝑣𝑢

3 𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

Benefits of Attention Mechanism

 Key benefit: Allows for (implicitly) specifying different
importance values (𝜶𝒗𝒖) to different neighbors

 Computationally efficient:
 Computation of attentional coefficients can be parallelized

across all edges of the graph

 Aggregation may be parallelized across all nodes

 Storage efficient:
 Sparse matrix operations do not require more than

𝑂(𝑉 + 𝐸) entries to be stored

 Fixed number of parameters, irrespective of graph size

 Localized:
 Only attends over local network neighborhoods

 Inductive capability:
 It is a shared edge-wise mechanism

 It does not depend on the global graph structure
125

GNN Layer in Practice

 In practice, these classic GNN

layers are a great starting point

 We can often get better

performance by considering a

general GNN layer design

 Concretely, we can include

modern deep learning modules

that proved to be useful in many

domains

126

A suggested GNN Layer

GNN Layer in Practice

 Many modern deep learning modules can be
incorporated into a GNN layer

 Attention/Gating:

 Control the importance of a message

 Batch Normalization:

 Stabilize neural network training

 Dropout:

 Prevent overfitting

 More:

 Any other useful deep learning modules

127

A suggested GNN Layer

Batch Normalization

 Goal: Stabilize neural networks training

 Idea: Given a batch of inputs (node embeddings)

 Re-center the node embeddings into zero mean

 Re-scale the variance into unit variance

𝛍𝑗 =
1

𝑁

𝑖=1

𝑁

𝐗𝑖,𝑗Input: 𝐗 ∈ ℝ𝑁×𝑑

𝑁 node embeddings

Trainable Parameters:
𝛄, 𝛃 ∈ ℝ𝐷

Output: 𝐘 ∈ ℝ𝑁×𝑑

Normalized node embeddings

𝛔𝑗
2 =

1

𝑁

𝑖=1

𝑁

𝐗𝑖,𝑗 − 𝛍𝑗
2

 X𝑖,𝑗 =
X𝑖,𝑗 − μ𝑗

σ𝑗
2 + 𝜖

Y𝑖,𝑗 = γ𝑗 X𝑖,𝑗 + β𝑗

Step 1:
Compute the
mean and variance
over 𝑁 embeddings

Step 2:
Normalize the feature
using computed mean
and variance

Dropout

 Goal: Regularize a neural net to prevent overfitting.

 Idea:

 During training: with some probability 𝑝, randomly set

neurons to zero (turn off)

 During testing: Use all the neurons for computation

129
Removed neurons

Dropout

Dropout for GNNs

 In GNN, Dropout is applied to the

linear layer in the message function

 A simple message function with

linear layer: 𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

130

Dropout
𝐡𝑢

𝑙−1
𝐦𝑢

(𝑙)

𝐖 𝑙

(2) Aggregation

(1) Message

Activation (Non-linearity)

 Rectified linear unit (ReLU)

ReLU 𝐱𝑖 = max(𝐱𝑖 , 0)

 Most commonly used

 Sigmoid

𝜎 𝐱𝑖 =
1

1 + 𝑒−𝐱𝑖

 Used only when you want to restrict the range

of your embeddings

 Parametric ReLU

PReLU 𝐱𝑖 = max 𝐱𝑖 , 0 + 𝑎𝑖min(𝐱𝑖 , 0)

𝑎𝑖 is a trainable parameter

 Empirically performs better than ReLU

131

𝑥

𝑦

0

𝑥
𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒−𝑥

GNN Layer in Practice

 Summary: Modern deep

learning modules can be

included into a GNN layer for

better performance

 Designing novel GNN layers is

still an active research frontier

 You can explore diverse GNN

designs or try out your own ideas

in GraphGym

132

A GNN Layer

https://github.com/snap-stanford/GraphGym

Summary

 Single GNN layer:
 Message

 Aggregation

Apply ML modules
 Attention

 Drop out

 Normalization

 Non-linearity

133

134

General Framework

• A single GNN layer: Aggregation and Message

• Layer connectivity: Stacking

• Graph manipulations(augmentation)

• Learning objectives/metrics

5 main issues
1 2

3

4

5

STACKING LAYERS

135

Stacking GNN Layers

136

GNN Layer 2

GNN Layer 1

(3) Layer
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks,

NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

Stacking GNN Layers

 How to construct a Graph Neural Network?

 The standard way: Stack GNN layers sequentially

 Input: Initial raw node feature 𝐱𝑣

 Output: Node embeddings 𝐡𝑣
(𝐿)

after 𝐿 GNN layers

137

𝐡𝑣
(0)

= 𝐱𝑣

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)

Graph Neural Networks - Depth

B

A C F

E

B

D

C

A

C

B
A

F

E

A

D

Target Node

A

How many

hops should

we explore?

138

The Over-Smoothing Problem

 The issue of stacking many GNN layers

 GNN suffers from the over-smoothing problem

 The over-smoothing problem: all the node

embeddings converge to the same value

 This is bad because we want to use node

embeddings to differentiate nodes

 Why does the over-smoothing problem

happen?

139

Receptive Field of a GNN

 Receptive field: the set of nodes that

determine the embedding of a node of interest

 In a 𝑲-layer GNN, each node has a receptive

field of 𝑲-hop neighborhood

140

Receptive field
for 1-layer GNN

Receptive field
for 2-layer GNN

Receptive field
for 3-layer GNN

Receptive Field of a GNN

 Receptive field overlap for two nodes

 The shared neighbors quickly grows when

we increase the number of hops (num of GNN

layers)

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!

141

Receptive Field & Over-smoothing

 We can explain over-smoothing via the

notion of the receptive field

 We know the embedding of a node is

determined by its receptive field

 If two nodes have highly-overlapped receptive

fields, then their embeddings are highly similar

  nodes will have highly-overlapped receptive

fields  node embeddings will be highly

similar  suffer from the over-smoothing

problem

How do we overcome over-smoothing problem?

142

143

Over-smoothing example

Design GNN Layer Connectivity

What do we learn from the over-smoothing problem?

 Lesson 1: Be cautious when adding GNN layers

 Unlike neural networks in other domains (CNN for image

classification), adding more GNN layers do not always

help

 Step 1: Analyze the necessary receptive field to solve

your problem. E.g., by computing the diameter of the graph

 Step 2: Set number of GNN layers 𝐿 to be a bit more than

the receptive field we like. Do not set 𝑳 to be

unnecessarily large!

Question: How to enhance the expressive power of a

GNN, if the number of GNN layers is small?
144

Expressive Power for Shallow GNNs

 How to make a shallow GNN more expressive?

Solution 1: Increase the expressive power within

each GNN layer

 In our previous examples, each transformation or

aggregation function only include one linear layer

 We can make aggregation/transformation become a

deep neural network!

145

(2) Aggregation

(1) Transformation

If needed, each box could
include a 3-layer MLP

Expressive Power for Shallow GNNs

 How to make a shallow GNN more expressive?

Solution 2: Add layers that do not pass messages

 A GNN does not necessarily only contain GNN layers

 E.g., we can add MLP layers (applied to each node) before and

after GNN layers, as pre-process and post-process layers

146

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning/transformation over node
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Design GNN Layer Connectivity

 What if my problem still requires many GNN layers?

Lesson 2: Add skip connections in GNNs

 Observation from over-smoothing: Node embeddings in

earlier GNN layers can sometimes better differentiate nodes

 Solution: We can increase the impact of earlier layers on the

final node embeddings, by adding shortcuts in GNN

147

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition,

CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Idea of Skip Connections

 Why do skip connections work?

 Intuition: Skip connections create a mixture of models

 𝑁 skip connections  2𝑁 possible paths

 Each path could have up to 𝑁 modules

148

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

 We automatically get a mixture
of shallow GNNs and deep GNNs

Example: GCN with Skip Connections

 A standard GCN layer

 ℎ𝑣
(𝑙)

= 𝜎 𝑢∈𝑁 𝑣 W 𝑙 ℎ𝑢
𝑙−1

𝑁 𝑣

 A GCN layer with skip connection

 ℎ𝑣
(𝑙)

= 𝜎 𝑢∈𝑁 𝑣 W 𝑙 ℎ𝑢
𝑙−1

𝑁 𝑣
+ ℎ𝑣

(𝑙−1)

149

This is our 𝐹 x

𝐹(x) + x

Other Options of Skip Connections

 Other options: Directly

skip to the last layer

 The final layer directly

aggregates from the all

the node embeddings in

the previous layers

150

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)

Input: 𝐡𝑣
(0)

Output: 𝐡𝑣
(𝑓𝑖𝑛𝑎𝑙)

151

General Framework

• A single GNN layer: Aggregation and Message

• Layer connectivity: Stacking

• Graph manipulations(augmentation)

• Learning objectives/metrics

5 main issues
1 2

3

4

5

GRAPH MANIPULATIONS

152

General GNN Framework

153

(4) Graph manipulation

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

Why Manipulate Graphs

Our assumption so far has been

 Raw input graph = computational graph

Reasons for breaking this assumption

 Feature level:

 The input graph lacks features  feature augmentation

 Structure level:

 The graph is too sparse  inefficient message passing

 The graph is too dense  message passing is too costly

 The graph is too large  cannot fit the computational graph

into a GPU

 It is just unlikely that the input graph happens to be the

optimal computation graph for embeddings

154

Graph Manipulation Approaches

 Graph Feature manipulation

 The input graph lacks features  feature

augmentation

 Graph Structure manipulation

 The graph is too sparse  Add virtual

nodes/edges

 The graph is too dense  Sample neighbors

when doing message passing

 The graph is too large  Sample subgraphs to

compute embeddings

155

Feature Augmentation on Graphs

Why do we need feature augmentation?

 (1) Input graph does not have node

features

 This is common when we only have the

adjacency matrix

Standard approaches:

(a) Assign constant values to nodes

156

1

1

1

1

1

1

Feature Augmentation on Graphs

(b) Assign unique IDs to nodes

 These IDs are converted into one-hot vectors

157

1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5

One-hot vector for node with ID=5

Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot
Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. High dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

155

Feature Augmentation on Graphs

Why do we need feature augmentation?

(2) Certain structures are hard to learn by GNN

 Example: Cycle count feature

 Can GNN learn the length of a cycle that 𝑣1 resides

in?

 Unfortunately, no

159

𝑣1 𝑣1

𝑣1 resides in a cycle
with length 3

𝑣1 resides in a cycle with
length 4

Feature Augmentation on Graphs

Why do we need feature augmentation?

 (2) Certain structures are hard to learn by GNN

 Solution:

 We can use cycle count as augmented node

features

160

𝑣1 𝑣1

𝑣1 resides in a cycle with
length 3

𝑣1 resides in a cycle with
length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural

Networks, AAAI 2021

Identity-aware Graph Neural Networks

Feature Augmentation on Graphs

Why do we need feature augmentation?

 (2) Certain structures are hard to learn by GNN

 Other commonly used augmented features:

 Clustering coefficient

 PageRank

 Centrality

 …

 Any feature we have introduced when we talked

about traditional ML approaches

161

Add Virtual Nodes / Edges

Motivation: Augment sparse graphs

 (1) Add virtual edges

 Common approach: Connect 2-hop neighbors

via virtual edges

 Intuition: Instead of using adjacency matrix 𝐴
for GNN computation, use 𝐴 + 𝐴2

162

A

B

C

D

E

Authors
Papers

 Use cases: Bipartite graphs

 Author-to-papers (they authored)

 2-hop virtual edges make an author-author
collaboration graph

Add Virtual Nodes / Edges

Motivation: Augment sparse graphs

(2) Add virtual nodes

 The virtual node will connect to all the

nodes in the graph

 Suppose in a sparse graph, two nodes

have shortest path distance of 10

 After adding the virtual node, all the

nodes will have a distance of 2

 Node A – Virtual node – Node B

 Benefits: Greatly improves message

passing in sparse graphs

163

The virtual node

Node Neighborhood Sampling

Our approach so far:
 All the neighbors are used for message passing

 Problem: Dense/large graphs, high-degree
nodes

New idea: (Randomly) determine a node’s
neighborhood for message passing

164

Hamilton et al. Inductive Representation Learning on Large Graphs,

NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

Neighborhood Sampling Example

For example, we can randomly choose 2

neighbors to pass messages

 Only nodes 𝐵 and 𝐷 will pass message to 𝐴

165

Neighborhood Sampling Example

Next time when we compute the embeddings,

we can sample different neighbors

 Only nodes 𝐶 and 𝐷 will pass message to 𝐴

166

Neighborhood Sampling Example

In expectation, we can get embeddings similar to the
case where all the neighbors are used

 Benefits: Greatly reduce computational cost

 And in practice it works great!

167

168

General Framework

• A single GNN layer: Aggregation and Message

• Layer connectivity: Stacking

• Graph manipulations(augmentation)

• Learning objectives/metrics

5 main issues
1 2

3

4

5

LEARNING WITH GNNS

169

A General GNN Framework

170

(5) Learning objective

How do we train a GNN?

GNN Training Pipeline

171

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

So far what we have covered

Output of a GNN: set of node embeddings

{𝐡𝑣
𝐿
, ∀𝑣 ∈ 𝐺}

GNN Prediction Heads

Idea: Different task levels require different

prediction heads

172

Node-level

prediction

Edge-level

prediction

Graph-level

prediction

GNN Training Pipeline (1)

173

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks

Prediction Heads: Node-level

Node-level prediction: We can directly make
prediction using node embeddings

 After GNN computation, we have 𝑑-dim node

embeddings: {𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺}

 Suppose we want to make 𝑘-way prediction

 Classification: classify among 𝑘 categories

 Regression: regress on 𝑘 targets

 𝒚𝒗 = Headnode(𝐡𝑣
𝐿
) = 𝐖(𝐻)𝐡𝑣

(𝐿)

 𝐖(𝐻) ∈ ℝ𝑘×𝑑 : We map node embeddings from 𝐡𝑣
(𝐿)

∈ ℝ𝑑 to 𝒚𝑣 ∈ ℝ𝑘 so that we can compute the loss
174

Output of the

classifier

Prediction Heads: Edge-level

Edge-level prediction: Make prediction using pairs of
node embeddings

 Suppose we want to make 𝑘-way prediction

 𝒚𝒖𝒗 = Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿)

 What are the options for Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿)?
175

?
𝐡𝑢

𝐿

𝐡𝑣
𝐿

Prediction Heads: Edge-level

 Options for Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿):

(1) Concatenation + Linear

 We have seen this in graph attention

 𝒚𝒖𝒗 = Linear(Concat(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
))

 Here Linear(⋅) will map 2𝑑-dimensional

embeddings (since we concatenated embeddings)

to 𝑘-dim embeddings (𝑘-way prediction)

176

𝐡𝑢
(𝑙−1)

𝐡𝑣
(𝑙−1)

Concatenate Linear
 𝒚𝑢𝑣

Prediction Heads: Edge-level

Options for Headedg𝑒(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
):

(2) Dot product

 𝒚𝒖𝒗 = (𝐡𝑢
𝐿
)𝑇𝐡𝑣

𝐿

 This approach only applies to 𝟏-way prediction (e.g.,
link prediction: predict the existence of an edge)

 Applying to 𝒌-way prediction:

 Similar to multi-head attention: 𝐖(1), … ,𝐖(𝑘) trainable

 𝒚𝒖𝒗
(𝟏)

= (𝐡𝑢
𝐿
)𝑇𝐖(1)𝐡𝑣

𝐿

…

 𝒚𝒖𝒗
(𝒌)

= (𝐡𝑢
𝐿
)𝑇𝐖(𝑘)𝐡𝑣

𝐿

 𝒚𝑢𝑣 = Concat(𝒚𝒖𝒗
(𝟏)
, … , 𝒚𝒖𝒗

(𝒌)
) ∈ ℝ𝑘

177

Prediction Heads: Graph-level

Graph-level prediction: Make prediction using all the
node embeddings in our graph

 Suppose we want to make 𝑘-way prediction

 𝒚𝐺 = Headgraph({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

178

Graph-level prediction

(2) Aggregation

(1) Message

 Headgraph(⋅) is similar to

AGG(⋅) in a GNN layer!

Prediction Heads: Graph-level

Options for Headgraph({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (1) Global mean pooling

 𝒚𝐺 = Mean({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (2) Global max pooling

 𝒚𝐺 = Max({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 (3) Global sum pooling

 𝒚𝐺 = Sum({𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

 These options work great for small graphs

For large graphs, hierarchical aggregation
179

GNN Training Pipeline (2)

180

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(2) Where does ground-truth come from?
- Supervised labels
- Unsupervised signals

Supervised vs Unsupervised

 Supervised learning on graphs

 Labels come from external sources

 E.g., predict drug likeness of a molecular graph

 Unsupervised learning on graphs

 Signals come from graphs themselves

 E.g., link prediction: predict if two nodes are connected

 Sometimes the differences are blurry

 We still have “supervision” in unsupervised learning

 E.g., train a GNN to predict node clustering coefficient

 An alternative name for “unsupervised” is “self-

supervised”

181

Supervised Labels on Graphs

 Supervised labels come from the specific
use cases. For example:

 Node labels 𝒚𝒗: in a citation network, which
subject area does a node belong to

 Edge labels 𝒚𝒖𝒗: in a transaction network,
whether an edge is dishonest

 Graph labels 𝒚𝐺: among molecular graphs, the
drug likeness of graphs

 Advice: Reduce your task to node / edge /
graph labels, since they are easy to work with
 E.g., we knew some nodes form a cluster. We can

treat the cluster that a node belongs to as a node
label

182

Unsupervised Signals on Graphs

 The problem: sometimes we only have a graph,
without any external labels

 The solution: “self-supervised learning”, we can
find supervision signals within the graph.
For example, we can let GNN predict the following:

 Node-level 𝒚𝑣. Node statistics: such as clustering
coefficient, PageRank, …

 Edge-level 𝒚𝑢𝑣. Link prediction: hide the edge between
two nodes, predict if there should be a link

 Graph-level 𝒚𝐺. Graph statistics: for example, predict if
two graphs are isomorphic

 These tasks do not require any external labels!

183

GNN Training Pipeline (3)

184

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(3) How do we compute the final loss?
- Classification loss
- Regression loss

Settings for GNN Training

 The setting: We have 𝑁 data points

 Each data point can be a node/edge/graph

 Node-level: prediction 𝒚𝑣
(𝑖)

, label 𝒚𝑣
(𝑖)

 Edge-level: prediction 𝒚𝑢𝑣
(𝑖)

, label 𝒚𝑢𝑣
(𝑖)

 Graph-level: prediction 𝒚𝐺
(𝑖)

, label 𝒚𝐺
(𝑖)

 We will use prediction 𝒚(𝑖), label 𝒚 𝑖 to refer

predictions at all levels

185

Classification or Regression

 Classification: labels 𝒚 𝑖 with discrete value

 E.g., Node classification: which category does a

node belong to

 Regression: labels 𝒚 𝑖 with continuous

value

 E.g., predict the drug likeness of a molecular

graph

 GNNs can be applied to both settings

 Differences: loss function & evaluation

metrics
186

Classification Loss

Cross entropy (CE) is a very common loss function
in classification

 𝐾-way prediction for 𝑖-th data point:

CE 𝒚(𝑖), 𝒚(𝑖) = −
𝑗=1

𝐾

𝒚𝑗
(𝑖)

log(𝒚𝒋
(𝒊)
)

where:

𝒚(𝑖) 𝜖 ℝ𝐾 = one-hot label encoding

 𝒚(𝑖)𝜖 ℝ𝐾 = prediction after Softmax(⋅)

 Total loss over all 𝑁 training examples

Loss =
𝑖=1

𝑁

CE 𝒚(𝑖), 𝒚(𝑖)
187

Label Prediction

𝑖-th data point

𝑗-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g.

E.g.

Regression Loss

 For regression tasks we often use Mean

Squared Error (MSE) a.k.a. L2 loss
 𝐾-way regression for data point (i):

MSE 𝒚(𝑖), 𝒚(𝑖) =
𝑗=1

𝐾

(𝒚𝑗
(𝑖)
− 𝒚𝑗

𝑖
)2

where:

𝒚(𝒊) 𝜖 ℝ𝑘 = Real valued vector of targets

 𝒚(𝒊)𝜖 ℝ𝑘 = Real valued vector of predictions

 Total loss over all 𝑁 training examples

Loss =

𝑖=1

𝑁

MSE 𝒚(𝑖), 𝒚(𝑖)
188

1.4 2.3 1.0 0.5 0.6

0.9 2.8 2.0 0.3 0.8

E.g.

E.g.

𝒊-th data point

𝒋-th target

GNN Training Pipeline (4)

189

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC

Evaluation Metrics: Regression

 We use standard evaluation metrics for GNN

 In practice we will use sklearn for implementation

 Suppose we make predictions for 𝑁 data points

 Evaluate regression tasks on graphs:

 Root mean square error (RMSE)

𝑖=1

𝑁 𝒚(𝑖) − 𝒚(𝑖) 2

𝑁

 Mean absolute error (MAE)
 𝑖=1
𝑁 𝒚(𝑖) − 𝒚(𝑖)

𝑁

190

https://scikit-learn.org/stable/modules/model_evaluation.html

Evaluation Metrics: Classification

 Evaluate classification tasks on graphs:

 (1) Multi-class classification
 We simply report the accuracy

1 argmax 𝒚(𝑖) = 𝒚(𝑖)

𝑁

 (2) Binary classification
 Metrics sensitive to classification threshold

 Accuracy

 Precision / Recall

 If the range of prediction is [0,1], we will use 0.5 as
threshold

 Metric Agnostic to classification threshold

 ROC AUC
191

Metrics for Binary Classification

 Accuracy:
TP+TN

TP+TN+FP+FN
=

TP+TN

|Dataset|

 Precision (P):
TP

TP+FP

 Recall (R):
TP

TP+FN

 F1-Score:
2P∗R

P+R

192

Confusion matrix

(4) Evaluation Metrics

 ROC Curve: Captures the tradeoff in TPR

and FPR as the classification threshold is

varied for a binary classifier.

193

TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

Note: the dashed line represents
performance of a random classifier

Image Credit:

Wikipedia
FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

(4) Evaluation Metrics

 ROC AUC: Area under the ROC Curve.

 Intuition: The probability that a classifier will rank a
randomly chosen positive instance higher than a
randomly chosen negative one

194

Content Credit:

Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

GNN Training Pipeline (5)

195

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(5) How do we split our dataset
into train / validation / test set?

Dataset split

Dataset Split: Fixed/Random Split

 Fixed split: We will split our dataset once

 Training set: used for optimizing GNN
parameters

 Validation set: develop model/hyperparameters

 Test set: held out until we report final
performance

 Random split: we will randomly split our
dataset into training/validation/test

 We report average performance over different
random seeds

196

Why Splitting Graphs is Special

 Suppose we want to split an image dataset

 Image classification: Each data point is an

image

 Here data points are independent

 Image 5 will not affect our prediction on image 1

197

Training

Validation

Test

3
2

45

1

6

Why Splitting Graphs is Special

 Splitting a graph dataset is different!

 Node classification: Each data point is a node

 Here data points are NOT independent

 Node 5 will affect our prediction on node 1, because

it will participate in message passing  affect node 1’s

embedding

 What are our options?
198

Training

Validation

Test

3
2

45

1

6

Why Splitting Graphs is Special

Solution 1 (Transductive setting): The input graph

can be observed in all the dataset splits (training,

validation and test set).

 We will only split the (node) labels

 At training time, we compute embeddings using the

entire graph, and train using node 1&2’s labels

 At validation time, we compute embeddings using the

entire graph, and evaluate on node 3&4’s labels

199

Training

Validation

Test

3
2

45

1

6

Why Splitting Graphs is Special

Solution 2 (Inductive setting): We break the edges
between splits to get multiple graphs

 Now we have 3 graphs that are independent. Node 5
will not affect our prediction on node 1 any more

 At training time, we compute embeddings using the
graph over node 1&2, and train using node 1&2’s
labels

 At validation time, we compute embeddings using the
graph over node 3&4, and evaluate on node 3&4’s
labels

200

Training

Validation

Test

3
2

45

1

6

Transductive/Inductive Settings

 Transductive setting: training/validation/test sets
are on the same graph
 The dataset consists of one graph

 The entire graph can be observed in all dataset
splits, we only split the labels

 Only applicable to node/edge prediction tasks

 Inductive setting: training/validation/test sets are
on different graphs
 The dataset consists of multiple graphs

 Each split can only observe the graph(s) within the
split. A successful model should generalize to
unseen graphs

 Applicable to node/edge/graph tasks
201

Example: Node Classification

 Transductive node classification

 All the splits can observe the entire graph structure,

but can only observe the labels of their respective nodes

202

Training

Validation

Test

Training

Validation

Test

 Inductive node classification
 Suppose we have a dataset of 3 graphs
 Each split contains an independent graph

Example: Graph Classification

 Only the inductive setting is well defined

for graph classification

 Because we have to test on unseen graphs

 Suppose we have a dataset of 5 graphs. Each

split will contain independent graph(s).

203

Training Validation Test

Example: Link Prediction

 Goal of link prediction: predict missing edges

 Setting up link prediction is tricky:

 Link prediction is an unsupervised/self-supervised

task. We need to create the labels and dataset splits

on our own

 Concretely, we need to hide some edges from the

GNN and the let the GNN predict if the edges exist

204

3
2

45

1

Original graph Input graph to GNN

3
2

45

1 3
2

45

1

Predictions made by GNN

?

Setting up Link Prediction

For link prediction, we will split edges twice

Step 1: Assign 2 types of edges in the original graph

 Message edges: Used for GNN message passing

 Supervision edges: Use for computing objectives

205

3
2

45

1

Original graph

Message edges
Supervision edges

Setting up Link Prediction

 Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

 Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent

graph

206

3
2

45

1 8
7

910

6 13
12

1415

11

Training set Validation set Test set

𝐺1 𝐺2 𝐺3

Setting up Link Prediction

 Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

 Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph

 In train or val or test set, each graph will have 2

types of edges: message edges + supervision

edges

 Supervision edges are not the input to GNN

207

Training set Validation set

Message

edge

Supervision

edge

Test set

𝐺1 𝐺2 𝐺3

3
2

45

1 8
7

910

6 13
12

1415

11

Setting up Link Prediction

Option 2: Transductive link prediction split:

 This is the default setting when people talk

about link prediction

 Suppose we have a dataset of 1 graph

208

3
2

45

1

Setting up Link Prediction

Option 2: Transductive link prediction split:

 By definition of “transductive”, the entire graph

can be observed in all dataset splits

 But since edges are both part of graph structure

and the supervision, we need to hold out

validation/test edges

 To train the training set, we further need to hold out

supervision edges for the training set

209

3
2

45

1

Setting up Link Prediction

Option 2: Transductive link prediction split:

210

After training, supervision edges are known to GNN. Therefore, an ideal model
should use supervision edges in message passing at validation time.
The same applies to the test time.

3
2

45

1

(1) At training time:

Use training message

edges to predict

training supervision

edges

(2) At validation time:

Use training message

edges & training

supervision edges to

predict validation

edges

(3) At test time:

Use training message

edges & training

supervision edges &

validation edges to

predict test edges

3
2

45

13
2

45

1

GNN Training Pipeline

211

Prediction
head

Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/GraphGym

Summary

 We introduce a general GNN framework:

 GNN Layer:

 Transformation + Aggregation

 Classic GNN layers: GCN, GraphSAGE, GAT

 Layer connectivity:

 The over-smoothing problem

 Solution: skip connections

 Graph Augmentation:

 Feature augmentation

 Structure augmentation

 Learning Objectives

 The full training pipeline of a GNN
212

213

Questions

