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Strength of Weak Ties

 How people find out about new jobs?

 Mark Granovetter, part of his PhD in 1960s

 People find the information through personal contacts

 But: Contacts were often acquaintances rather than 

close friends

 This is surprising: 

 One would expect your friends to help you out 

more than casual acquaintances when you are 

between the jobs

 why is it that distant acquaintances are most 

helpful?
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Triadic Closure

 Which edge is more likely to form, a-b or a-c?

 Triadic closure: If two people in a network have a friend in 

common there is an increased likelihood they will become friends 

themselves

a

b
c
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Birds of a feather, flock together

The concept of community
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The images received with the aid of GPS mounted on the six wolf cattle flocks 

in the American National Park show how they respect each other's territory.

The concept of community
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The concept of community

call patterns of one of the largest 

mobile phone operators in Belgium

Flemish

(Dutch)

Walloons

(French)
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Zachary’s Karate Club

The concept of community
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Similarity of Connected Nodes in Social Networks

• Race

• Religion

• Education

• Income level

• Job and skills

• Language

• Interests and preferences
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More examples of Communities 

• Network: World Wide Web: 

Communities: Sites on related topics

• Network: Friendship network:

Communities: Group formation among people

• Network: Metabolic networks:

Communities: Functional modules

• Network: Collaboration network:

Communities: Research fields
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A variety of definitions of community/cluster/module exist:

• A group of nodes which share common properties 

and/or play a similar role within the graph 

[Fortunato, 2010].

• A subset of nodes within which the node-node 

connections are dense, and the edges to nodes in other 

communities are less dense

[Girvan & Newman, 2002].

Community- Definition
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Why community detection? 

Graphs help us to comprehend in 

a visual way the global 

organization of the system. This 

works extremely well when the 

graph is small but, as soon as the 

system is made of hundreds or 

thousands of nodes, a brute force 

representation typically leads to a 

meaningless cloud of nodes.
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Uncovering communities/modules helps to change the resolution of 

the representation and to draw a readable map of the network
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Why community detection? 
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 Networks of tightly connected 

groups

 Network communities:

 Sets of nodes with lots of 

connections inside and few to 

outside (the rest of the 

network)

Communities, clusters, 

groups, modules

Community- Definition



Overlapping vs. Disjoint Communities

Overlapping Communities Disjoint Communities

14



 What do we really mean by a community?

 How many communities are in a network? 

 How many different ways can we partition a 

network into communities?

 How can we detect communities?

 How do communities evolve and how can we 

study evolving communities?

 How can we evaluate detected communities?

Community detection- Questions 
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H2: Connectedness Hypothesis 

A community corresponds to a connected 

subgraph. 

H3: Density Hypothesis

Communities correspond to locally dense 

neighborhoods of a network. 

H1: A network’s community structure is uniquely 

encoded in its wiring diagram (there is a ground truth 

about a network’s community organization, that can be 

uncovered by inspecting Aij).

Community Hypotheses
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Cliques as communities

A clique is a complete subgraph of k-nodes

Basics of Communities
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• Triangles are frequent; larger 

cliques are rare. 

• Communities do not necessarily 

correspond to complete subgraphs, 

as many of their nodes do not link 

directly to each other. 

• Finding the cliques of a network is 

computationally rather demanding, 

being a so-called NP-complete 

problem.

Cliques as communities

Basics of Communities
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Consider a connected subgraph C of Nc nodes

Internal degree, ki
int : set of links of node i that 

connects to other nodes of the same community C.

External degree ki
ext: the set of links of node i that 

connects to the rest of the network.  

If ki
ext=0: all neighbors of i belong to C, and C is a 

good community for i.

If ki
int=0, all neighbors of i belong to other 

communities, then i should be assigned to a 

different community. 

Strong and weak communities

Basics of Communities
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Strong community:
Each node of C has more links 

within the community than with the 

rest of the graph. 

Weak community:
The total internal degree of C 

exceeds its total external degree, 

Clique Strong Weak

Basics of Communities
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2.5 billion transistors

Partition the full wiring 

diagram of an integrated 

circuit into smaller 

subgraphs, so that they 

minimize the number of 

connections between them.

Graph partitioning
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How many ways can we partition a network into 2 

communities? (Graph bisection)

Divide a network into two non-overlapping subgraphs, such 

that the number of links between the nodes in the two groups 

is minimized.

Two subgroups of size n1 and n2. Total number of 

combinations:

N=10  256 partitions (1 ms)

N=100 1026 partitions (1021 years)

Graph partitioning
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Kerninghan-Lin Algorithm for graph bisection

• Partition a network into two groups of 

predefined size. This partition is called cut.

• Inspect each a pair of nodes, one from each 

group. Identify the pair that results in the 

largest reduction of the cut size (links 

between the two groups) if we swap them

• Swap them. 

• If no pair deduces the cut size, we swap the 

pair that increases the cut size the least. 

• The process is repeated until each node is 

moved once.

Graph partitioning
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Spectral Clustering Algorithms

 Three basic stages:

 1) Pre-processing

 Construct a matrix representation of the graph

 2) Decomposition

 Compute eigenvalues and eigenvectors of the matrix

 Map each point to a lower-dimensional 

representation based on one or more eigenvectors

 3) Grouping

 Assign points to two or more clusters, based on the 

new representation
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Spectral Partitioning Algorithm

 1) Pre-processing:

 Build Laplacian 

matrix L of the 

graph (L = D-A)

 2) Decomposition:

 Find eigenvalues 

and eigenvectors x

of the matrix L

 Map vertices to 

corresponding 

components of 2
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Spectral Partitioning

 3) Grouping:

 Sort components of reduced 1-dimensional vector

 Identify clusters by splitting the sorted vector in two

 How to choose a splitting point?

 Naïve approaches: 

 Split at 0 or median value

 More expensive approaches:

 Attempt to minimize normalized cut in 1-dimension 

(sweep over ordering of nodes induced by the eigenvector)
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Example: Spectral Partitioning

27

Rank in x2

V
a
lu

e
 o

f 
x

2



Both terms refer to the division of a network into dense groups 

• Graph partitioning: the number and size of the groups is fixed 

by the user. 

• Community detection: the number and size of the groups are 

unspecified (unknown), but determined by the organization of 

the network. Ideally, the method should be able to uncover a 

mixture of groups of different size in the same system. It should 

divide a network only when a good subdivision exists and leave 

it undivided otherwise

Community detection vs. Graph partitioning
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Is it possible to uncover the (multi-scale) modular 

organization of networks in an automated fashion? 

Given a graph, we look for an algorithm able to uncover its 

modules without specifying their number nor their size The 

method should be scalable to accommodate very large 

networks, as often observed in the real-world.
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Clustering and Community Finding

How to extract groups?

Many methods:

 Hierarchical methods:

• Top-down/ bottom-up

 Graph partitioning methods:

• Define “edge counting” metric – conductance, expansion, modularity, 

etc. – and optimize!

 Spectral methods:

• Based on eigenvector decomposition of modified graph adjacency 

matrix

 Clique percolation method:

• To extract overlapping communities in networks
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Hierarchical 

Clustering
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Hierarchical Methods
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Top-downbottom-up



• Agglomerative algorithms merge nodes and communities with high 

similarity. (A bottom-up strategy)

• Divisive algorithms split communities by removing links that connect 

nodes with low similarity. (A top-down strategy)

1. Build a similarity matrix for the network

2. Similarity matrix: how similar two nodes are to each other  we need to 

determine from the adjacency matrix

3. Hierarchical clustering iteratively identifies groups of nodes with high similarity, 

following one of two distinct strategies:

Hierarchical tree or dendrogram: visualize the history of the merging or splitting 

process the algorithm follows. Horizontal cuts of this tree offer various 

community partitions.

4.

Hierarchical Clustering
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Step 1: Define the Similarity Matrix (Ravasz algorithm)

• High for node pairs that likely belong to the same 

community, low for those that likely belong to different 

communities. 

• Nodes that connect directly to each other and/or share 

multiple neighbors are more likely to belong to the 

same dense local neighborhood, hence their similarity 

should be large.

Topological overlap matrix:

JN(i,j): number of common 

neighbors of node i and j;  (+1) if 

there is a direct link between i and j;

Agglomerative algorithms merge nodes and communities with 

high similarity. 

Agglomerative Algorithms 
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Step 2: Decide Group Similarity

• Groups are merged based on their mutual similarity through single, 

complete or average cluster linkage

Agglomerative Algorithms 
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Step 3: Apply Hierarchical Clustering 

• Assign each node to a community of its own and evaluate the 

similarity for all node pairs. The initial similarities between these 

“communities” are simply the node similarities.

• Find the community pair with the highest similarity and merge 

them to form a single community.

• Calculate the similarity between the new community and all other 

communities.

• Repeat from Step 2 until all nodes are merged into a single 

community.

Step 4: Build Dendrogram

• Describes the precise order in which the nodes are assigned to 

communities. 

Agglomerative Algorithms 
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Computational complexity:

• Step 1 (calculation similarity matrix): 

• Step 2-3 (group similarity): 

• Step 4 (dendrogram): 

Agglomerative Algorithms 
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Step 1: Define a Centrality Measure 

(Girvan-Newman algorithm)

• Link betweenness is the number of shortest paths 

between all node pairs that run along a link. 

• Random-walk betweenness. A pair of nodes m and n

are chosen at random. A walker starts at m, following 

each adjacent link with equal probability until it 

reaches n. Random walk betweenness xij is the 

probability that the link i→j was crossed by the 

walker after averaging over all possible choices for 

the starting nodes m and n

Divisive algorithms split communities by removing 

links that connect nodes with low similarity. 

Divisive Algorithms
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Step 2: Hierarchical Clustering

a) Compute of the centrality  

of each link.

b) Remove the link with the 

largest centrality; in case of 

a tie, choose one randomly.

c) Recalculate the centrality 

of each link for the altered 

network.

d) Repeat until all links are 

removed (yields a 

dendrogram).

Divisive Algorithms
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Where to “cut”?

Ambiguity in Hierarchical clustering
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Modularity
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Modularity

Modularity measures how different the 

clusters of the partition are from the 

corresponding clusters of the 

ensemble of random graphs obtained 

by randomly joining the vertices, such 

to preserve their degrees, on average

Randomly wired networks are not expected to have a community structure.
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the fraction of the edges that fall within communities minus the 

expected fraction if edges were distributed at random



Imagine a partition in nc communities

Modularity

Original data Expected connections, 

a model
Relative to a specific partition

Modularity is a measure associated to a partition

Random network

Modularity
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Total number of links

LC

Number of communities 

Total number of links in Community C

Total node degrees in Community C

Modularity
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Another way of writing M



Modularity - Example
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Modularity
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Modularity - Example



Modularity
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Modularity - Example



• (a) Optimal partition, that 

maximizes the modularity.

• (b) Sub-optimal  but positive 

modularity.

• (c) Zero modularity: Assigning 

all nodes to the same 

community, independent of the 

network structure. 

• (d) Negative Modularity: If we 

assign each node to a different 

community.

Which partition?

48

Modularity - Example



A greedy algorithm, which iteratively joins nodes if the move increases the new 

partition’s modularity. 

Step 1. Assign each node to a community of its own. Hence we start with N

communities.

Step 2. Inspect each pair of communities connected by at least one link and 

compute the modularity variation obtained if we merge these two communities.

Step 3. Identify the community pairs for which ΔM is the largest and merge them. 

Note that modularity of a particular partition is always calculated from the full 

topology of the network.

Step 4. Repeat step 2 until all nodes are merged into a single community.

Step 5. Record for each step and select the partition for which the modularity is 

maximal.

Modularity based community identification
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Modularity for Girvan-Newman method

 Divisive hierarchical clustering based on the notion of edge betweenness:

Number of shortest paths passing through the edge

 Girvan-Newman Algorithm:

- Undirected unweighted networks

 Repeat until no edges are left:

 Calculate betweenness of edges

 Remove edges with highest betweenness

 Connected components are communities

 Gives a hierarchical decomposition of the network

[Girvan-Newman ‘02]
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Girvan-Newman: Example

Need to re-compute betweenness at every step

49
33

12
1
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:
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Girvan-Newman: Example



 Zachary’s Karate club: 

hierarchical decomposition
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Girvan-Newman: Results



Modularity: Number of clusters

 Modularity is useful for selecting the number of clusters:
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Caution!
In social networks (a), the weak tie hypothesis says that communities are 

connected by links with smaller weight

In transport systems, high betweenness links (correlates with weight, (b)) 

connect different communities

Weights can help identifying communities

Characterizing Communities
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Clique Percolation Method (CPM): 

 Input

 A parameter k, and a network 

 Procedure

 Find out all cliques of size k in the 

given network

 Construct a clique graph. 

 Two cliques are adjacent if they share k-1 

nodes

 These connected components in the 

clique graph form a community

Using Cliques as a seed of Community

Overlapping Communities
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Cliques of size 3:

{1, 2, 3}, {3, 4,5}, {4, 5, 7}, 

{4,5, 6}, {4,6,7}, {5,6, 7}, 

{6, 7, 8}, {8,9,10}

Communities: 

{1, 2, 3} {8,9,10}

{3,4, 5, 6, 7, 8}

Clique Percolation Method: Example
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The CFinder software package that implements the 

Clique Percolation Method can be downloaded at

www.cfinder.org

NetworkX

Online Resources (CFinder)
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http://www.cfinder.org


Benchmarcs 

and metrics
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Newman-Girvan (NG) Benchmark

• N nodes in nc=4 communities

• Nodes in the same community connected with probability 

pint, otherwise pext

• Control parameter

Testing Communities -Benchmarks

60



Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

• N nodes in NC communities, taken from PNc~ NC
-ζ

• Each node is assigned a degree k from Pk~k-ϒ

• Each node i is assigned to a community, and receives an internal degree (1-μ)ki

and an external degree μki.

• Connect randomly nodes, according to the constraints above, until there are no 

more free stubs

Testing Communities -Benchmarks

Vertex degree and 

community size are power-

law distributed, to account 

for the heterogeneity 

observed in real networks 

with community structure

61



 The number of communities after grouping can be 
different from the ground truth

 No clear community correspondence between 
clustering result and the ground truth 

 Normalized Mutual Information (NMI) can be used

Ground Truth

1, 2, 
3

4, 5, 
6

1, 3 2
4, 5, 

6

Clustering Result

How to measure the 
clustering quality?

Testing Communities -Metrics
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Normalized Mutual Information

 Entropy: the information contained in a distribution

 Mutual Information: the shared information between two 

distributions

 Normalized Mutual Information (between 0 and 1)

 Consider a partition as a distribution (probability of one 

node falling into one community), we can compute the 

matching between the clustering result and the ground 

truth

or KDD04, DhilonJMLR03, Strehl
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Normalized Mutual Information
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NMI-Example

 Partition a:  [1, 1, 1, 2, 2, 2] 

 Partition b:  [1, 2, 1, 3, 3, 3]

1, 2, 3 4, 5, 6

1, 3 2 4, 5,6

h=1 3

h=2 3

a

hn

l=1 2

l=2 1

l=3 3

b

ln l=1 l=2 l=3

h=1 2 1 0

h=2 0 0 3

lhn ,

=0.8278

contingency table or confusion matrix

n2,ln1,l
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Testing Accuracy with the NG Benchmark

Normalized Mutual Information
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Normalized Mutual Information

Testing Accuracy with the NG Benchmark

67



Community dynamics(evolution)
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Gephi

NetworkX

R assigns self-loops to nodes to increase or decrease the aversion of nodes to form communities

Finds the partition that maximizes 

modularity (considers weights and 

direction)

Calculates the modularity of the partition 

you provide

Online Resources (Modularity)
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Questions


