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Network Model

 A network model:

an algorithm which generates artificial networks

 It generates artificial graphs which are similar to real-world 

networks

 How a graph becomes similar to real networks?

 Small-worlds, transitivity, long-tail degree distribution, 

community structure, …

 How to generate a network that conforms to such properties?

 Network models try to answer that question
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Network Models

 Terminology:

 Network model

 Network generation method

 Generative model

 Random graph generation model

 Examples:

 Erdős–Rényi (ER) model: random networks

 Watts–Strogatz (WS) model: small-world networks

 Barabási–Albert model: scale-free neworks

 Many other models (a research topic)

 How efficient? How similar to real networks? How 

tunable/adaptive?
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Why Network Models?

 Uncover/explain the generative mechanisms underlying 

networks
 Models can uncover the hidden reality of networks

 Reveal the processes which results in real-world networks

 Predict the future

 They may simulate real networks:
 When we want to study the properties/dynamics of networks

 When we have no access to real-world networks

 When it is not safe to publish a network dataset

 And many other applications
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Why Network Models? (cont’d)

 Network structure

 The parameters give us insight into the global structure of the network 

itself.

 Simulations

 Given an algorithm working on a graph we would like to evaluate how its 

performance depends on various properties of the network. 

 Extrapolations & Sampling 

 We can use the model to generate a larger/smaller graph.

 Graph similarity

 To compare the similarity of the structure of different networks (even of 

different sizes) one can use the differences in estimated parameters as a 

similarity measure.

 Graph compression

 We can compress the graph, by storing just the model parameters.

5



6

Random graph model 

(Erdős and Rényi, 1959)

"Small world" model 

(Watts & Strogatz, 1998)

Preferential attachement model 

(Barabasi & Albert, 1999)

Basic Network Models
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Gnp

Pál Erdös

(1913-1996)
Alfréd Rényi

(1921-1970)

Erdos- Renyi Random graph model 



Random Network Model

 Definition: A random graph is a graph of N nodes 

where each pair of nodes is connected by 

probability p.          G(N,p)

Erdös-Rényi model (1959)

Connect with probability p

p=1/6  

N=10 

<k> ~ 1.5
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Erdős–Rényi (ER) Model, Example:

p=0.03

N=100

9



Clustering coefficient 

 Clustering coefficient is defined as the probability that two vertices with a

common neighbor are connected themselves

 In a random graph the probability that any two vertices are connected is

equal to p=<k>/(n-1)

 Hence the clustering coefficient is also:

 Given that for large n, average degree is constant, it follows that the

clustering coefficient goes to 0

 This is a sharp difference between the G(n,p) model and real networks

10
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C=p=<k>/(n-1)
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 n and p do not uniquely determine the graph! 

(The graph is a result of a random process)

 We can have many different realizations given the same 

n and p

The Number of Links is Variable

number of edges=8 number of edges=7 number of edges=9



Number of Links in ER Networks

P(L): the probability to have exactly L links in a network of N
nodes and probability p:
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As the network size increases, the distribution becomes 

increasingly narrow—we are increasingly confident that the 

degree of a node is in the vicinity of <k>.
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< k >= p(N -1)

Degree Distribution of Random Networks 

The probability of having k links for a node?

(Degree Probability Distribution)

Makes sense
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Degree Distribution of Random Networks 

For large values of n, 

the degree distribution 

follows a Poisson 

distribution
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 P(L): the probability to have a 

network of exactly L links

L
NN

L pp

L

N

LP





























 2

)1(

)1(2)(

 The average number of links <L> in a 
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ER properties

 Binomial degree distribution:

(biased coin experiment)

 The average degree:
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Giant component and Phase transition

 How many components exist in G(n,p) model

 p=0  Every node is isolated  Component size = 1 (independent of n)

 p=1  All nodes connected with each other  Component size = n

(proportional to n)

 It is interesting to examine what happens for values of p in-between

 In particular, what happens to the largest component in the network as p

increases?
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Phase transition in random graphs

The size of the largest component undergoes a sudden change, or phase transition, 

from constant size to extensive size at one particular special value of p (pc = 1/n)

Fraction of nodes in the 

largest component

Giant component and Phase transition

RandomGraph-cut.mov


What G(n, p) graphs look like?
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Diameter of G(n, p) random graphs
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Simple random graphs are locally tree-like (no loops; 

low clustering coefficient)

On average, the number of nodes D
steps away from a node:



Random graph properties

 Poisson degree distribution

 Locally tree-like structure (very few triangles)

 Small diameters (small-world property)

 Sudden appearance of a giant component 

(Phase transition)
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Network Properties of G(n, p) 
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• Degree distribution: 

• Path length:                       O(log n)

• Clustering coefficient:      C=p=<k>/(n-1)
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Does ER Represent Real Networks?

 It is a simple and old model

 Not compatible to many characteristics of real networks
 No Transitivity

 Degree distribution differs from real networks (Poisson vs. Long-tail) 

 No community structure

 No Assortativity (No correlation between the degrees of adjacent vertices)

 However, random networks show small-world-ness
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Small World Model 

Duncan J. Watts Steven Strogatz 



Small World Networks

 The World is Small. many evidences:

 Milgram experiment 

 Six degrees of Kevin Bacon

 Erdos number

 Six degrees of separation

 The real networks also show high local clustering

 A friend of my friend, is probably my friend

John Guare, 1990 1993
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A Small-World

o Consequence of expansion:

 Short paths: O(log n)

This is the “best” we can do if the graph

has constant degree and n nodes

 Random graphs also result in short paths

o But networks have 

local structure:

 Triadic closure:

Friend of a friend is my friend

o How can we have both?

Pure exponential growth

Triadic closure reduces growth rate
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Small-World vs. Clustering

 Could a network with high clustering be at the same time a small world?

 How can we at the same time have 

high clustering and small diameter?

 Clustering implies edge “locality”

 Randomness enables “shortcuts”

High clustering
High diameter

Low clustering
Low diameter
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Clustering Implies Edge Locality 

Data set Avg. shortest path 
length (measured)

Avg. Shortest path 
length (random)

Clustering 

coefficient
(measured)

Clustering 

coefficient
(random)

Film actors (225,226 
nodes, avg. degree k=61) 3.65 2.99 0.79 0.00027

Electrical power grid 
(4,941 nodes, k=2.67)

18.7 12.4 0.080 0.005

Network of neurons (282 
nodes, k=14)

2.65 2.25 0.28 0.05

MSN (180 million edges, 
k=7)

6.6 ... 0.114 0.00000008

Facebook (721 million, 
k=99) 4.7 ... 0.14 ...

Real-world networks have high clustering and small diameter
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Solution: The Small-World Model

Small-world Model [Watts-Strogatz ‘98]:

2 components to the model:

 (1) Start with a low-dimensional regular lattice
- Has high clustering coefficient

 (2) Now introduce randomness (“shortcuts”): Rewire: 

 Add/remove edges to create shortcuts to join remote parts 
of the lattice

 For each edge with prob. p move the other end to a random node

28
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The Small-World Model

29

High clustering

High diameter

High clustering

Low diameter

Low clustering

Low diameter
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Rewiring allows us to interpolate between regular 
lattice and a random graph



Watts-Strogatz (WS) Model

 Watts-Strogatz networks:

 Random networks:
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What happens in between?

 Small shortest path means small clustering?

 Large shortest path means large clustering?

 Through numerical simulation

 As we increase p from 0 to 1

 Fast decrease of mean distance

 Slow decrease in clustering
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What happens in between?

Intuition: It takes a lot 

of randomness to ruin 

the clustering, but a 

very small amount to 

create shortcuts.



 p=0 delta-function

 p>0 broadens the distribution

 p=1  random networks  Binomial distribution

 The shape of the degree distribution is similar to that of a random graph 

and has a pronounced peak at k=K and decays exponentially for large |k-K|

Degree distribution
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Small World Model: Summary

 Can a network with high clustering also be a small world?

 Yes! Only need a few random links.

 The Watts-Strogatz Model:

 A random graph generation model 

 Provides insight on the interplay between clustering and the small-world 

 Captures the structure of many realistic networks

 Accounts for the high clustering of real networks
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Preferential Attachment Model

Albert-László Barabási
Réka Albert



Hubs represent the most striking difference between a 

random and a scale-free network. Their emergence in 

many real systems raises several fundamental questions.

• Why does the random network model of Erdős and Rényi

fail to reproduce the hubs and the power laws observed in 

many real networks? 

• Why do so different systems as the WWW or the cell 

converge to a similar scale-free architecture? 

36

Preferential Attachment Model



The random network model differs from real networks 

in two important characteristics: 

1-Growth: While the random network model assumes 

that the number of nodes is fixed (time invariant), real 

networks are the result of a growth process that 

continuously increases.

2-Preferential Attachment: While nodes in random 

networks randomly choose their interaction partner, in real 

networks new nodes prefer to link to the more connected 

nodes.

Growth and Preferential Attachment
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Preferential attachment (PA) model

 parameters: m, n (positive integers)

 n: number of nodes

 m: number of attachments of each new node

 at time 0, consider an arbitrary initial graph

 E.g., a single edge or a 10-clique

 at time t+1, add m edges from a new node vt+1 to 

existing nodes forming the graph Gt

 the edge vt+1 xi  is added with probability:
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The larger deg(xi), the higher the 

probability that new node is joined to xi
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Basic BA-model

 Very simple algorithm to implement

 start with an initial set of m0 fully connected nodes

 e.g. m0 = 3

 now add new vertices one by one, each one with exactly m edges

 each new edge connects to an existing vertex in proportion to the 

number of edges that vertex already has → preferential attachment

 easiest if you keep track of edge endpoints in one large array and 

select an element from this array at random

 the probability of selecting any one vertex will be proportional to 

the number of times it appears in the array – which corresponds to 

its degree

1 2

3
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Generating BA graphs – cont’d

 To start, each vertex has an equal 

number of edges (2)

 the probability of choosing any 

vertex is 1/3

 We add a new vertex, and it will 

have m edges, here take m=2

 draw 2 random elements from the 

array – suppose they are 2 and 3 

 Now the probabilities of selecting 

1,2,3,or 4 are 

1/5, 3/10, 3/10, 1/5

 Add a new vertex, draw a vertex for 

it to connect from the array

 etc.

1 2

3

1 1 2 2 3 3

1 2

3
1 1 2 2 2 3 3 3 4 4

4

1 2

3 4

1 1 2 2 2 3 3 3 3 4 4 4 5 5

5
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Preferential Attachment
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Preferential Attachment and Scale-free Networks

 Preferential attachment (PA) results in scale-free networks

 Networks with power-law degree distribution are called 

scale-free

 PA  rich get richer

 A few nodes become important hubs with many 

attachments

 Many nodes stay with little relationships

degree

frequency
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 The graph is connected

- Every vertex is born with a link (m= 1) or several links (m > 1)

- It connects to older vertices, which are part of the giant 

component

 The older are richer

- Nodes accumulate links as time goes on

- preferential attachment will prefer wealthier nodes, who 

tend to be older and had a head start

 BA networks are not clustered.(Can you think of a growth 

model of having preferential attachment and clustering at the 

same time?)

Properties of BA Networks
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Properties of BA Networks

 Degree distribution

- power law degree distribution with 

 Average path length

- Which is even shorter than in random networks

 Average degree

- 2m

 Clustering coefficient

- no analytical result

- higher for the BA model than for random networks
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Problems of the  BA Model

 BA model is a nice one, but is not fully satisfactory!

 BA model does not give satisfactory answers with regard to 

clustering

 While the small world model of Watts and Strogatz does!

 BA predicts a fixed exponent of 3 for the powerlaw

 However, real networks shows exponents between 2 

and 3

45



Problems of the  BA Model (cont’d)

 Real networks are not “completely” power law

 After having obeyed the power-law for a large amount of k, 

for very large k, the distribution suddenly becomes exponential

 They exhibit a so called exponential cut-off

 In general

 The distribution has still a “heavy tailed”

 However, such tail is not infinite

 This can be explained because

 The number of resources (i.e., of links) that an individual can sustain (i.e., 

can properly handled) is often limited
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Growing Networks

 In general, networks are not static entities

 They grow, with the continuous addition of new nodes

 The Web, Internet, acquaintances, scientific 

literature, etc.

 Thus, edges are added in a network with time

 Preferential-Attachment, is a growing-network model
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Evolving Networks

 More in general…

 Network grows AND network evolves

 The evolution may be driven by various forces

 Connection age

 Connection satisfaction

 Connections can change during the life of the network

 Not necessarily in a random way

 But following characteristics of the network…

 Preferential-Attachment is not an evolving-network model
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Variations on the BA Model: Evolving Networks

 The problems of the BA Model may depend on the fact that 

networks not only grow but also evolve

 BA does not account for evolutions following the growth

 Evolution is frequent in real networks, otherwise:

 Google would have never replaced Altavista

 All new Routers in the Internet would be unimportant ones

 A Scientist would have never the chance of becoming a 

highly-cited one
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Variations on the BA Model: Edges Rewiring

 By coupling the model for node additions

 Adding new nodes at new time interval

 One can consider also mechanisms for edge rewiring

 E.g., adding some edges at each time interval

 Some of these can be added randomly

 Some of these can be added based on preferential 

attachment

 Then, it is possible to show (Albert and Barabasi, 2000)

 That the network evolves as a power law with an exponent 

that can vary between 2 and infinity

 This enables explaining the various exponents that are 

measured in real networks
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Variations on the BA Model: Aging and Cost

 Node Aging

 The possibility of hosting new links decreased with the “age” of the node

 E.g. nodes get tired or out-of-date

 Link cost

 The cost of hosting new link increases with the number of links

 E.g., for a Web site this implies adding more computational power, for a 

router this means buying a new powerful router
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What implications does this have?

 Robustness

 Search

 Spread of disease

 Opinion formation

 Spread of computer viruses

 Gossip
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mike

In social networks, it’s nice to be a hub

The concept of trust
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But it depends on what you’re sharing…
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How do network connectivity change as nodes get 

removed?

 Nodes can be removed: 

- Random failure:  Remove nodes uniformly at random 

- Targeted attack: Remove nodes in order of decreasing degrees 
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Random failure or targeted attack
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In a scale-free network, the 

random removal (error) of even 

a large fraction of vertices 

impacts the overall 

connectedness of the network 

very little , while targeted attack 

destroys the connectedness 

very quickly, causing a rapid 

drop in efficiency. On the 

contrary, in random graphs, 

removal of nodes through 

either error or attack has the 

same effect on the network 

performance.

Scale-free network

Random network

Error

Attack

Error

Attack

Dashun08_Random.mov
Dashun08_Attack.mov


Network Models: Comparison

Topology Average Path Length 

(L)

Clustering 

Coefficient (CC)

Degree Distribution 

(P(k))

Random Graph Short (log N /log⟨k⟩, 
where N=nodes, 

⟨k⟩=avg degree)

Low (CC ≈ ⟨k⟩/N, 

since edges are 

random)

Poisson Dist.:

Small World

(Watts & Strogatz, 1998)

Short (similar to 

random networks)

High (local 

clustering 

preserved via 

rewiring)

Similar to random 

(but depends on 

rewiring probability)

Scale-Free network Very short (~log N / 

log log N, "ultra-

small-world")

Low overall, but hubs 

can have local 

clustering

Power-law 

Distribution:

P(k) ~ k-

!
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Questions


