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Can one walk 

across the seven 

bridges and never 

cross the same 

bridge twice?     

The Bridges of Konigsberg
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Can one walk 

across the seven 

bridges and never 

cross the same 

bridge twice?     1735: Euler’s theorem:

(a) If a graph has more than two nodes of odd degree, there is no path. 

(b) If a graph is connected and has no odd degree nodes, it has at least one path.
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The Bridges of Konigsberg

No matter how smart we are, we will never find the desired path. Networks 

have properties encoded in their structure that limit or enhance their behavior.
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Introduction to graph theory

 Graph – mathematical object consisting of a set of:

V = nodes (vertices, points).

E = edges (links, arcs) between pairs of nodes.

Denoted by G = (V, E).

Captures pairwise relationship between objects.

Graph size parameters:  n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { {1,2}, {1,3}, {2,3}, {2,4}, {2,5}, {3,5}, {3,7}, {3,8}, {4,5}, {5,6} }

n = 8

m = 11



N=4

M=4

A Common Language
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network often refers to real systems
• www, 

• Social network

• Metabolic network. 

Language: (Network, node, link)

graph: mathematical representation of a network
•web graph, 

•social graph (a Facebook term)

Language: (Graph, vertex, edge)

We will try to make this distinction whenever it is 

appropriate, but in most cases we will use the two terms 

interchangeably.

Networks or Graphs
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 The choice of the proper network representation 

determines our ability to use network theory successfully.

 In some cases there is a unique, unambiguous 

representation. 

 In other cases, the representation is by no means unique.

 For example, the way we assign the links between a 

group of individuals will determine the nature of the 

question we can study.

Choosing a Proper Representation
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If you connect individuals that work 

with each other, you will explore 

the professional network.
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Choosing a Proper Representation



If you connect individuals based on their first 

name (all Peters connected to each other), 
you will be exploring what? 

It is a network, nevertheless.

may have little practical utility
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Choosing a Proper Representation



Links: undirected (symmetrical) 

Directed links :

URLs on the www

phone calls 

metabolic reactions

Undirected Directed
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I

Links:  directed (arcs). 

Digraph = directed graph:

Undirected links :

coauthorship links

Actor network

protein interactions

An undirected 
link is the 

superposition 
of two opposite 
directed links.

A

G

F

B

C

D

E

Undirected vs. Directed Networks

10



Degree, Average Degree and 

Degree Distribution
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Node degree: the number of links connected to the node.
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In directed networks we can define an in-degree and out-

degree. The (total) degree is the sum of in- and out-degree.

Source: a node with kin= 0; Sink: a node with kout= 0.
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Node Degrees
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N – the number of nodes in the graph

L: Number of links in the graph
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Average Degree
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Average Degree (Real Networks)
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P(k): probability that a

randomly chosen node 

has degree k

Nk = # nodes with degree k

P(k) = Nk / N     ➔ plot

Degree Distribution
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Degree Distribution



 Let pk denote a fraction of nodes with degree k

 We can plot a histogram of pk vs. k

 In a Erdos-Renyi random graph degree 
distribution follows Poisson distribution

 Degrees in real networks are heavily skewed to 
the right

 Distribution has a long tail of values that are far 
above the mean

 Heavy (long) tail: 
 Amazon sales

 word length distribution, …
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Degree Distribution



Poisson vs. Scale-free network

Poisson network Scale-free (power-law) network

(Erdos-Renyi random graph)

Degree distribution is Poisson

Degree 

distribution is 

Power-law
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Poisson vs. Scale-free network



Graph Representation
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 Adjacency matrix

 Adjacency list
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Graph Representation



Adjacency Matrix
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Graph Representation:  Adjacency Matrix

 Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge.

 Two representations of each edge (symmetric matrix for undirected graphs; not for directed 

graphs).

 Space: proportional to n2.

 Not efficient for sparse graphs (small number of edges compared to the maximum 

possible number of edges in the graph), 

 e.g., biological networks

 Algorithms might have longer running time if this representation used

 Checking if (u, v) is an edge takes (1) time. 

 Identifying all edges takes (n2) time.
1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 1 1 0 0 0

5 0 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0

← ∑ = degree of node 2



Adjacency Matrix
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Adjacency Matrix



• Convenient for analytical calculations

• Needs a lot of memory - O(N^2) space

Advantages

Disadvantages

• Easy to remove/add an edge (changing the value of an 

element in the matrix is O(1)

• Inconvenient for numerical calculations

Adjacency Matrix
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The maximum number of links a network 

of N nodes can have is:

max

( 1)

2 2

N N N
L

  
  
 

A graph with degree L=Lmax is called a complete graph, 

and its average degree is   <k>=N-1

Complete Graph
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Most networks observed in real systems are sparse: 

L <<  Lmax or       <k> <<N-1.  

WWW (ND Sample): N=325,729; L=1.4 106 Lmax=1012 <k>=4.51

Protein (S. Cerevisiae): N=    1,870; L=4,470 Lmax=107 <k>=2.39 

Coauthorship (Math): N=  70,975; L=2 105 Lmax=3 1010 <k>=3.9

Movie Actors: N=212,250; L=6 106 Lmax=1.8 1013 <k>=28.78

(Source: Albert, Barabasi, RMP2002)

Real Networks are Sparse
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Graph Representation:  Adjacency List

 Adjacency list.  Node indexed array of lists.

 Two representations of each edge.

 Space proportional to m + n.

 Checking if (u, v) is an edge takes O(deg(u)) time.

 Identifying all edges takes (m+n) time = linear time for G(V,E).

 Requires O(m+n) space.  Good for dealing with sparse graphs.
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Weighted Graphs

 In many applications, each edge of a

graph has an associated numerical

value, called a weight.

 Usually, the edge weights are

nonnegative integers.

 Weighted graphs may be either

directed or undirected.

The weight of an edge is often referred to as the "cost" of the edge.

In applications, the weight may be a measure of the length of a 

route, the capacity of a line, the energy required to move between 

locations along a route, etc.
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Weight of edges can represent everything in real world, e.g amount of money

to be transferred from one account to an other account can be positive or

negative:

 One gene activates/ inhibits another

 One person trusting/ distrusting another

Think of a driver, who gets paid to drive his employer from s to t but he pay

between a and b (say travelling between his home and his workplace).

Weighted Graphs

For weighted networks the elements of the 

adjacency matrix carry the weight of the 

link as:  Aij = wij
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bipartite graph (or bigraph) is a graph whose nodes can be divided into two 

disjoint sets U and V such that every link connects a node in U to one in V; 

that is, U and V are independent sets. 

Examples:

Hollywood actor network

Collaboration networks

Disease network (diseasome)

Bipartite Graphs

32

http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Independent_set_(graph_theory)


Gene 

network

GENOME

PHENOMEDISEASOME  

Disease 

network
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Bipartite Graphs(Gene Disease Network)



A path is a sequence of nodes in which  each node is adjacent to the 

next one  

Pi0,in  of length n between nodes i0 and in is an ordered collection of 

n+1 nodes and n links 

  

Pn ={i0,i1,i2,...,in}

  

Pn = {(i0 ,i1),(i1,i2),(i2 ,i3 ),...,(in-1,in )}

• In a directed network, the path can follow only the direction of an arrow. 

Paths
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Characterizing networks: How far apart are things?
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Network metrics: paths

 A path is  any sequence of vertices such that every 

consecutive pair of vertices in the sequence is connected by an 

edge in the network.

 For directed: traversed in the correct direction for the edges.

 path can visit itself (vertex or edge) more than once

 Self-avoiding paths do not intersect themselves.

 Path length r is the number of edges on the path

 Called hops
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The distance (shortest path, geodesic path) between 

two nodes is defined as the number of edges along 

the shortest path connecting them.

*If the two nodes are disconnected, the distance is 

infinity.

In directed graphs each path needs to follow the 

direction of the arrows.

Thus in a digraph the distance from node A to B (on 

an AB path) is generally different from the distance 

from node B to A (on a BCA path).
D

C

A

B

D
C

A

B

Distance in a Graph- Shortest Path, Geodesic Path
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Average distance in networks

regular lattice (ring): 

d~N
clique: d=1

karate club friendship 

network: d=2.44
regular lattice 

(square): d~N1/2
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Shortest Path 

The path with the shortest length between two nodes 

(distance). 
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2 5

43

1

Diameter

2 5

43

1

Average Path Length

The longest shortest path 

in a graph

The average of the shortest 

paths for all pairs of nodes.
40

Diameter and Average Path Length 
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Diameter in directed and undirected Graphs



2 5

43

1

Cycle

2 5

43

1

Self-avoiding 

Path

A path with the same 

start and end node. 

A path that does not 

intersect itself.
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Cycle and Self-avoiding Path



2 5
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1

2 5
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Eulerian Path Hamiltonian Path

A path that visits each 

node exactly once.

A path that traverses 

each link exactly once.

43

Eulerian and Hamiltonian Path



Trees

 Trees are undirected graphs that contain no cycles

 For n nodes, number of edges m = n-1

 Any node can be dedicated as the root
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Examples of trees

 In nature

 trees

 river networks

 arteries (or veins, but not both)

 Man made

 sewer system

 Computer science

 binary search trees

 decision trees (AI)

 Network analysis

 minimum spanning trees 

 from one node – how to reach all other nodes most quickly

 may not be unique, because shortest paths are not always 
unique

 depends on weight of edges
45



Planar graphs

 A graph is planar if it can be drawn on a plane without any edges crossing
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Cliques and complete graphs

 Kn is the complete graph (clique) with K vertices

- each vertex is connected to every other vertex

- there are n*(n-1)/2 undirected edges

K5 K8K3
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Network metrics: graph density

 Of the connections that may exist between n nodes

 directed graph 

emax = n*(n-1)

 undirected graph

emax = n*(n-1)/2

 What fraction are present?

 density = e/ emax

 For example, out of 12 possible connections, 

this graph has 7, giving it a density of 7/12 = 0.583
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CONNECTEDNESS
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Characterizing networks:Is everything connected?
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Network metrics: components

 If there is a path from every vertex in a network to every other, 

the network is connected

 otherwise, it is disconnected

 Component: A subset of vertices such that there exist at least 

one path from each member of the subset to others and there 

does not exist another vertex in the network which is 

connected to any vertex in the subset 

 Maximal subset

 A singeleton vertex that is not connected to any other forms a 

size one component

 Every vertex belongs to exactly one component
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Network metrics: size of giant component

 if the largest component encompasses a significant fraction of the 

graph, it is called the giant component
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Connected (undirected) graph: any two vertices can be joined by a path.

A disconnected graph is made up by two or more connected components.   

Bridge: if  we erase it, the graph becomes disconnected. 

Largest Component: 

Giant Component

The rest: Isolates

D
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F

F

G

D
C

A

B

F

F

G

Connectivity of Undirected Graphs
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The adjacency matrix of a network with several components can be 

written in a block-diagonal form, so that nonzero elements are confined 

to squares, with all other elements being zero:
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Connectivity of Undirected Graphs



Strongly connected directed graph: has a path from each node to every other 

node and vice versa (e.g. AB path and BA path).

Weakly connected directed graph: it is connected if we disregard the edge 

directions.

Strongly connected components can be identified, but not every node is part

of a nontrivial strongly connected component.   

In-component: nodes that can reach the scc, 

Out-component: nodes that can be reached from the scc. 

D C
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B

F

G

E

E

C

A

B

G

F

D

Connectivity of Directed Graphs
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 Strongly Connected Component 
(SCC)

 Core with small-world property

 Upstream (IN)

 Core can’t reach IN

 Downstream (OUT)

 OUT can’t reach core

 Disconnected components

Broder et al. (Graph Structure of the Web, 2000) 
Examined a large web graph (200M pages, 1.5B links)

Bow-Tie structure of the web



Bridges and Local Bridges

 And edge that joins two nodes A and B in a graph is 

called a bridge if deleting the edge would cause A and B 

to lay in two different components

 local bridge - in real-world networks (with a giant 

component) - if deleting an edge between A and B would 

increase distance > 2
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Clustering coefficient
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 what fraction of your neighbors are connected?

Node i with degree ki

Ci in [0,1]

Clustering Coefficient

59



60

Clustering Coefficient



The Clustering Coefficiency

 The clustering coefficiency of a node A is a probability that two 

randomly selected friends of A are friends with each other

 Example: the clustering Coefficiency of A before and after the new 

edges? 

before = 1/6,                       after = 1/2
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Strongly Connected Directed graphs

Every pair of vertices are reachable from each other

Strongly 

Connected

Not Strongly 

Connected
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Strongly Connected Components

a

b

d

c

e

f

g
{ a , c , g }

{ f , d , e , b }

A strongly connected component of a graph is a maximal subset of nodes 

(along with their associated edges) that is strongly connected. Nodes 

share a strongly connected component if they are inter-reachable. 
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WWW >     directed multigraph with self-interactions

Protein Interactions >  undirected unweighted with self-interactions

Collaboration network >         undirected multigraph or weighted.

Mobile phone calls >             directed, weighted.        

Facebook Friendship links >       undirected, unweighted.

Graphology

64

Real networks can have multiple characteristics



Undirected network

N=2,018 proteins as nodes

L=2,930 binding interactions as links. 

Average degree  <k>=2.90. 

Not connected:  185 

components

the largest (giant component) 

1,647  nodes

Case study: Protein-Protein Interactions
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pk is the probability that 

a node has degree k. 

Nk = # nodes with degree k

pk = Nk / N    
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Case study: Protein-Protein Interactions



dmax=14

<d>=5.61
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Case study: Protein-Protein Interactions



<C>=0.12
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Case study: Protein-Protein Interactions



Real network properties

 Most nodes have only a small number of neighbors 
(degree), but there are some nodes with very high degree 
(power-law degree distribution)
 scale-free networks

 If a node x is connected to y and z, then y and z are likely 
to be connected
 high clustering coefficient

 Most nodes are just a few edges away on average.
 small world networks

 Networks from very diverse areas (from internet to 
biological networks) have similar properties
 Is it possible that there is a unifying underlying generative process?
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Processes on networks

 Why is it important to understand the structure of 

networks?

 Epidemiology: Viruses propagate much faster in scale-

free networks

 Vaccination of random nodes does not work, but targeted 

vaccination is very effective
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Graph Searching

Algorithms



Graph-searching Algorithms

 Searching a graph:

 Systematically follow the edges of a graph to visit the 

vertices of the graph.

 Used to discover the structure of a graph.

 Standard graph-searching algorithms.

 Breadth-first Search (BFS).

 Depth-first Search (DFS).
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BFS tries to learn local neighbors first

Breadth-first Search



75

Breadth-first Search
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Breadth-first Search



Depth-first Search (DFS)

 Explore edges out of the most recently discovered 

vertex v.

 When all edges of v have been explored, backtrack 

to explore other edges leaving the vertex from which 

v was discovered (its predecessor).

 “Search as deep as possible first.”

 Continue until all vertices reachable from the original 

source are discovered.

 If any undiscovered vertices remain, then one of 

them is chosen as a new source and search is 

repeated from that source.

77



78

DFS is better for learning global variables

Depth-first Search
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Node2vec (node embedding using biased random walk)

Trade off between local and global views 

of the network

BFS and DFS for node embedding
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Applications:

• Node classification

• Link prediction

• Graph classification

• Anomalous node detection

• Clustering

BFS and DFS for node embedding



Network Analysis

 What is a network?

 a bunch of nodes and edges

 How do you characterize it?

 with some basic network metrics

 How did network analysis get started?

 it was the mathematicians

 How do you analyze networks today? 

 with network analysis tools (pajek, Gephi, …)
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Some network analysis tools

Pajek
network analysis and visualization,

menu driven, suitable for large networks 

platforms: Windows (on linux via 

Wine) 

download

Netlogo
agent based modeling

recently added network modeling capabilities 

platforms: any (Java)

download

GUESS
network analysis and visualization,

extensible, script-driven (jython) 

platforms: any (Java)

download

Other useful software tools: 

visualization and analysis: 

UCInet - user friendly social network visualization and analysis software (suitable smaller networks)

iGraph - if you are familiar with R, you can use iGraph as a module to analyze or create large networks, or you can directly use the C

functions 

Jung - comprehensive Java library of network analysis, creation and visualization routines

Graph package for Matlab (untested?) - if Matlab is the environment you are most comfortable in, here are some basic routines 

SIENA - for p* models and longitudinal analysis 

SNA package for R - all sorts of analysis + heavy duty stats to boot 

NetworkX - python based free package for analysis of large graphs

InfoVis Cyberinfrastructure - large agglomeration of network analysis tools/routines, partly menu driven 

visualization only:

GraphViz - open source network visualization software (can handle large/specialized networks)

TouchGraph - need to quickly create an interactive visualization for the web? 

yEd - free, graph visualization and editing software 

specialized:

fast community finding algorithm

motif profiles

CLAIR library - NLP and IR library (Perl Based) includes network analysis routines 

finally: INSNA long list of SNA packages
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http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://ccl.northwestern.edu/netlogo/download.shtml
http://graphexploration.cond.org/download.html
http://www.analytictech.com/
http://cneurocvs.rmki.kfki.hu/igraph/
http://jung.sourceforge.net/
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12648
http://stat.gamma.rug.nl/siena.html
http://erzuli.ss.uci.edu/R.stuff/
https://networkx.lanl.gov/wiki
http://iv.slis.indiana.edu/lm/lm-networks.html
http://www.graphviz.org/
http://www.touchgraph.com/
http://www.yworks.com/en/products_yed_about.htm
http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
http://www.minet.uni-jena.de/~wernicke/motifs/index.html
http://tangra.si.umich.edu/clair/clairlib/
http://www.insna.org/INSNA/soft_inf.html
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://graphexploration.cond.org/
http://graphexploration.cond.org/


NetworkX

 NetworkX (http://networkx.lanl.gov/)

 It is a Python language software package for 

the creation, manipulation, and study of the 

structure, dynamics, and functions of complex 

networks.

 Just run:

 easy_install networkx
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http://networkx.lanl.gov/


Other visualization tool: gephi

 http://gephi.org

 primarily for visualization, has some nice touches

http://player.vimeo.com/video/9726202
84

http://gephi.org
http://player.vimeo.com/video/9726202


Other visualization tool: Walrus

 developed at CAIDA available under the GNU GPL. 

 “…best suited to visualizing moderately sized graphs that are nearly 
trees. A graph with a few hundred thousand nodes and only a slightly 
greater number of links is likely to be comfortable to work with.”

 Java-based

 Implemented Features

 rendering at a guaranteed frame rate regardless of graph size

 coloring nodes and links with a fixed color, or by RGB values stored in 
attributes

 labeling nodes

 picking nodes to examine attribute values

 displaying a subset of nodes or links based on a user-supplied boolean 
attribute

 interactive pruning of the graph to temporarily reduce clutter and occlusion

 zooming in and out

Source: CAIDA, http://www.caida.org/tools/visualization/walrus/
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http://www.gnu.org/licenses/gpl.html
http://www.caida.org/tools/visualization/walrus/


Other visualization tool: YEd 

http://www.yworks.com/en/products_yed_about.htm

(good primarily for layouts)
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http://www.yworks.com/en/products_yed_about.htm


Other Visualization tool: Prefuse

 user interface toolkit for interactive information visualization 

 built in Java using Java2D graphics library 

 data structures and algorithms 

 pipeline architecture featuring reusable, composable modules 

 animation and rendering support 

 architectural techniques for scalability 

 requires knowledge of Java programming

 website: http://prefuse.sourceforge.net
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http://prefuse.sourceforge.net/


Simple Prefuse visualizations

Source: Prefuse, https://github.com/prefuse
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https://github.com/prefuse
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Questions


