
Department of Computer Engineering

University of Kurdistan

Computer Architecture
Pipelining

By: Dr. Alireza Abdollahpouri

Pipelined MIPS processor

Any instruction set can be implemented in

many different ways

MIPS ISA

Single Cycle Multi-Cycle Pipelined

Short CPI

Long CCT
Long CPI

Short CCT

Short CPI

Short CCT

2

Micro-Arch.

Getting the Best of Both Datapaths

Single-cycle:
Clock rate = 125 MHz

CPI = 1

Multicycle:
Clock rate = 500 MHz

CPI  4

Pipelined:
Clock rate = 500 MHz

CPI  1

3

4

Pipelining Analogy

 Car assembly

5

Pipelining Analogy

 Pipelined laundry: overlapping execution

 Parallelism improves performance

 Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop loads:

 Speedup

= number of stages

 = 4

6

MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

7

Pipeline Performance

Assume time for stages is

• 100ps for register read or write

• 200ps for other stages

Compare pipelined datapath with single-cycle datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

8

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

9

Pipeline Speedup

If all stages are balanced

i.e., all take the same time

If not balanced, speedup is less

Speedup due to increased throughput

Latency (time for each instruction) does not decrease

10

Pipelining and ISA Design

MIPS ISA designed for pipelining

All instructions are 32-bits

Easier to fetch and decode in one cycle

c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats

Can decode and read registers in one step

Load/store addressing
Can calculate address in 3rd stage, access memory in 4th stage

Alignment of memory operands

Memory access takes only one cycle
11

MIPS stands for: Microprocessor without Interlocked Pipelined Stages

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to complete
its data read/write

 Control hazard

 Deciding on control action depends on previous
instruction

12

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require separate

instruction/data memories

 Or separate instruction/data caches

13

Structural Hazards

14

If same memory is

used for Instruction

and Data

Data Hazards

An instruction depends on completion of data access by a

previous instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3

15

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add $1,$3,$0

sub $4,$1,$3

and $6,$1,$7

or r$,$1,$9

xor $10,$1,$11

IF ID/RF EX MEM WB

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

16

Backward dependencies in time

Forwarding (aka Bypassing)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

17

New Paths to support Forwarding

M
E
M

/W
R

I
D
/E

X

E
X
/M

E
M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

18

Load-Use Data Hazard

Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

19

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

20

Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction

 Still working on ID stage of branch

 In MIPS pipeline

 Need to compare registers and compute target
early in the pipeline

 Add hardware to do it in ID stage

21

Stall on Branch

 Wait until branch outcome determined before

fetching next instruction

22

Branch Prediction

 Longer pipelines can’t readily determine branch

outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

23

MIPS with Predict Not Taken

Prediction

correct

Prediction

incorrect

24

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

25

Pipeline Summary

 Pipelining improves performance by

increasing instruction throughput

 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards

 Structure, data, control

 Instruction set design affects complexity of

pipeline implementation

The BIG Picture

26

MIPS Pipelined Datapath

WB
Right-to-left

flow leads

to hazards

27

Pipeline registers

 Need registers between stages

 To hold information produced in previous cycle

28

Pipeline Operation

 Cycle-by-cycle flow of instructions through the

pipelined datapath

 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams for

load & store

29

IF for Load, Store, …

30

IF for Load, Store, …
PC+4 is computed,

stored back into the PC,

stored in the IF/ID buffer although it will not be needed in a

later stage for LW or SW

Instruction word is fetched from memory,

and stored in the IF/ID buffer because it will be needed in

the next stage.

Write into the buffer

30

32

• Instruction is read from memory using the

address in PC and is placed in the IF/ID pipeline

register

• PC address is incremented by 4 and then written

back into PC to be ready for the next clock cycle

• This incremented address is also saved in IF/ID

pipeline register in case it is needed later for an

instruction

IF for Load, Store, …

ID for Load, Store, …

33

ID for Load
Bits of load instruction are

taken from IF/ID buffer,

while

new instruction is being

fetched back in stage 1.

Read register #1 and #2

contents are fetched and stored

in ID/EX buffer until needed in

next stage… #2 won't be

needed.

PC+4 is passed forward to

ID/EX buffer...

16-bit field is fetched from IF/ID

buffer, then sign-extended, then

stored in the ID/EX buffer for use in

a later stage.

Read from the buffer

33

35

ID for Load, Store, …

• Instruction portion of IF/ID pipeline register

supplying 16-bit immediate field, which is sign-

extended to 32 bits, and the register numbers to

read the two registers

• All three values are stored in the ID/EX pipeline

register, along with incremented PC address

• Everything might be needed by any instruction

during a later clock cycle is transferred

EX for Load

36

EX for Load

PC+4 is taken from ID/EX

buffer and added to branch

offset…

Read register #1 contents

are taken from ID/EX buffer

and provided to ALU.

Read register #2 is passed

forward to EX/MEM buffer,

for possible use in later

stage… but won't be

needed.

Computed branch target

address is stored in

EX/MEM buffer to await

decision in next stage... but

won't be needed.

ALU result and Zero line

are stored in EX/MEM

buffer for use as memory

address in next stage.

16-bit literal is provided to

ALU as second operand

36

MEM for Load

38

MEM for Load

Zero line taken from

EX/MEM buffer for

branch control logic

in this stage…

ALU result is taken from

EX/MEM buffer and

passed to Address port of

data memory.

ALU result also stored in

MEM/WB buffer for

possible use in last stage…

Read register #2 contents

taken from EX/MEM buffer

and passed to Write data

port of data memory.

Value on Read data port of

data memory is stored in

MEM/WB buffer, awaiting

decision in last stage..

38

WB for Load

Wrong

register

number

40

WB for Load

Since load instruction,

value from data memory is

selected and passed back

to register file.

But the Write register port

is now seeing the register

number from a different,

later instruction.

40

Corrected Datapath for Load

42

So we fix the register number problem by passing the Write register # from the

load instruction through the various inter-stage buffers… …and then back, on the correct

clock cycle.

EX for Store

43

EX for Store

Almost the same as for LW…

Read register #2 is passed

forward to EX/MEM buffer,

for use in later stage… for

SW this will be needed.

43

MEM for Store

45

MEM for Store

Zero line taken from

EX/MEM buffer for

branch control logic

in this stage…

ALU result is taken from

EX/MEM buffer and

passed to Address port of

data memory.

ALU result also stored in

MEM/WB buffer for

possible use in last stage…

Read register #2 contents

taken from EX/MEM buffer

and passed to Write data

port of data memory.

WB for Store

47

WB for Store

Since SW instruction,

neither value will be written

to the register file… doesn't

really matter which value

we send back…

Multi-Cycle Pipeline Diagram

• Form showing resource usage

49

Multi-Cycle Pipeline Diagram

• Traditional form

50

Single-Cycle Pipeline Diagram

• State of pipeline in a given cycle

51

Pipelined Control (Simplified)

52

Pipelined Control

 Control signals derived from instruction (as in

single-cycle implementation)

53

Pipelined Control

54

Data Hazards in ALU Instructions

 Consider this sequence:

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding

 How do we detect when to forward?

55

Dependencies & Forwarding

56

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

 ALU operand register numbers in EX stage
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

57

58

First hazard between sub $2, $1, $3 and and $12, $2, $5 is

detected when “and” is in EX and “sub” is in MEM because

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2 (1a)

Similar to above this time dependency between “sub” and

“or” can be detected as

MEM/WB.RegisterRd = ID/EX.RegisterRt = $2 (2b)

Two dependencies between “sub” and

”add” are not hazard Another form of forwarding

but it occurs within reg file

There is no hazard between “sub” and “sw”

Detecting the Need to Forward

Detecting the Need to Forward

 But only if forwarding instruction will write to a

register!

 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not $zero

 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

59

Forwarding Paths

60

Forwarding Conditions

 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Forwards the

result from the

previous instr. to

either input of

the ALU

Forwards the

result from the

second previous

instr. to either

input of the ALU

61

62

sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

sub

Forwarding Example

63

sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

suband

Forwarding Example

64

sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

subandor

Forwarding Example

Double Data Hazard

 Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur

 Want to use the most recent

 Revise MEM hazard condition

 Only fwd if EX hazard condition isn’t true

65

Revised Forwarding Condition

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

66

Datapath with Forwarding

67

Load-Use Data Hazard

Need to stall

for one cycle

68

Load-Use Hazard Detection

 Check when using instruction is decoded in ID stage

 ALU operand register numbers in ID stage are given
by:

 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when

 ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

69

How to Stall the Pipeline

 Force control values in ID/EX register to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using (current) instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

70

Stall/Bubble in the Pipeline

Stall inserted

here

71

Stall Hardware

 Along with the Hazard Unit, we have to implement the stall

 Prevent the instructions in the IF and ID stages from progressing

down the pipeline – done by preventing the PC register and the IF/ID

pipeline register from changing

 Hazard detection Unit controls the writing of the PC (PC.write) and

IF/ID (IF/ID.write) registers

 Insert a “bubble” between the lw instruction (in the EX stage) and the

load-use instruction (in the ID stage) (i.e., insert a noop in the

execution stream)

 Set the control bits in the EX, MEM, and WB control fields of the ID/EX
pipeline register to 0 (nop). The Hazard Unit controls the mux that

chooses between the real control values and the 0’s.

 Let the lw instruction and the instructions after it in the pipeline

(before it in the code) proceed normally down the pipeline

72

Datapath with Hazard Detection

73

74

Pipeline with and without forwarding

Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid hazards

and stalls

 Requires knowledge of the pipeline structure

75

Control Hazards

• When the flow of instruction addresses is not sequential (i.e., PC = PC
+ 4); incurred by change of flow instructions

– Conditional branches (beq, bne)

– Unconditional branches (j, jal, jr)

– Exceptions

• Possible approaches

– Stall (impacts CPI)

– Move decision point as early in the pipeline as possible, thereby reducing
the number of stall cycles

– Delay decision (requires compiler support)

– Predict and hope for the best !

• Control hazards occur less frequently than data hazards, but there is
nothing as effective against control hazards as forwarding is for data
hazards

76

Branch Hazards

 If branch outcome determined in MEM

PC

Flush these

instructions

(Set control

values to 0)

77

Reducing Branch Delay

 Move hardware to determine outcome to ID stage

 Target address adder

 Register comparator

 Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

...
72: lw $4, 50($7) #44+7x4=72 (PC+4 + Imm*4)

78

Example: Branch Taken

79

Example: Branch Taken

80

Data Hazards for Branches

 If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding

81

Data Hazards for Branches

 If a comparison register is a destination of

preceding ALU instruction or 2nd preceding load

instruction

 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

82

Data Hazards for Branches

 If a comparison register is a destination of

immediately preceding load instruction

 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

83

Dynamic Branch Prediction

 In deeper and superscalar pipelines, branch

penalty is more significant

 Use dynamic prediction

 Branch prediction buffer (aka branch history table)

 Indexed by recent branch instruction addresses

 Stores outcome (taken/not taken)

 To execute a branch

 Check table, expect the same outcome

 Start fetching from fall-through or target

 If wrong, flush pipeline and flip prediction

84

1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted twice!

outer: …
…

inner: …
…

beq …, …, inner
…

beq …, …, outer

 Mispredict as taken on last iteration of inner loop

 Then mispredict as not taken on first iteration of

inner loop next time around

85

2-Bit Predictor

 Only change prediction on two successive mispredictions

86

00 01

1011

Calculating the Branch Target

 Even with predictor, still need to calculate the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can fetch

target immediately

87

mux

PC

Addresses of

Recent Branches
Target

Addresses
low-order bits

used as index

Predict

Bits
Inc

=
predict_taken

Exceptions and Interrupts

 “Unexpected” events requiring change

in flow of control

 Different ISAs use the terms differently

 Exception

 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt

 From an external I/O controller

 Dealing with them without sacrificing performance is

hard

88

Exceptions in a Pipeline

 Another form of control hazard

 Consider overflow on add in EX stage
add $1, $2, $1

 Prevent $1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set Cause and EPC register values

 Transfer control to handler

 Similar to mispredicted branch

 Use much of the same hardware

89

Pipeline with Exceptions

85

• New input value for PC holds the initial address to fetch instruction from in the event of an exception.

• A Cause register to record the cause of the exception.

• An EPC register to save the address of the instruction to which we should return.

Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in parallel

 To increase ILP
 Deeper pipeline

 Less work per stage  shorter clock cycle

 Multiple issue
 Replicate pipeline stages  multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

91

Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at

runtime

92

Static Multiple Issue

 Compiler groups instructions into “issue

packets”

 Group of instructions that can be issued on a

single cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long

instruction

 Specifies multiple concurrent operations

  Very Long Instruction Word (VLIW)

93

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary

94

MIPS with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

95

Concluding Remarks

 ISA influences design of datapath and control

 Datapath and control influence design of ISA

 Pipelining improves instruction throughput

using parallelism

 More instructions completed per second

 Latency for each instruction not reduced

 Hazards: structural, data, control

 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism

 Complexity leads to the power wall

96

Single Cycle, Mult-Cycle, vs. Pipeline

Multiple Cycle Implementation:

Clk

Cycle 1

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

lw IFetch Dec Exec Mem WB

Pipeline Implementation:

IFetch Dec Exec Mem WBsw

IFetch Dec Exec Mem WBR-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

97

98

Questions

