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Pipelined MIPS processor

Any instruction set can be implemented in 

many different ways

MIPS ISA

Single Cycle Multi-Cycle Pipelined

Short CPI

Long CCT
Long CPI

Short CCT

Short CPI

Short CCT
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Getting the Best of Both Datapaths

Single-cycle:
Clock rate = 125 MHz

CPI = 1

Multicycle:
Clock rate = 500 MHz

CPI  4

Pipelined:
Clock rate = 500 MHz

CPI  1
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Pipelining Analogy

 Car assembly
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Pipelining Analogy

 Pipelined laundry: overlapping execution

 Parallelism improves performance

 Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop loads:

 Speedup

= number of stages

 = 4
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MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register
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Pipeline Performance

Assume time for stages is

• 100ps for register read or write

• 200ps for other stages

Compare pipelined datapath with single-cycle datapath

Instr Instr fetch Register 

read

ALU op Memory 

access

Register 

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps
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Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)
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Pipeline Speedup

If all stages are balanced

i.e., all take the same time

If not balanced, speedup is less

Speedup due to increased throughput

Latency (time for each instruction) does not decrease

10



Pipelining and ISA Design

MIPS ISA designed for pipelining

All instructions are 32-bits

Easier to fetch and decode in one cycle

c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats

Can decode and read registers in one step

Load/store addressing
Can calculate address in 3rd stage, access memory in 4th stage

Alignment of memory operands

Memory access takes only one cycle
11

MIPS stands for: Microprocessor without Interlocked Pipelined Stages



Hazards

 Situations that prevent starting the next 
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to complete 
its data read/write

 Control hazard

 Deciding on control action depends on previous 
instruction
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Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require separate 

instruction/data memories

 Or separate instruction/data caches
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Structural Hazards

14

If same memory is 

used for Instruction 

and Data



Data Hazards

An instruction depends on completion of data access by a 

previous instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3 
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Forwarding (aka Bypassing)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath
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New Paths to support Forwarding 
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Load-Use Data Hazard

Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!
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Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in 

the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles
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Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch 
outcome

 Pipeline can’t always fetch correct instruction

 Still working on ID stage of branch

 In MIPS pipeline

 Need to compare registers and compute target 
early in the pipeline

 Add hardware to do it in ID stage
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Stall on Branch

 Wait until branch outcome determined before 

fetching next instruction
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Branch Prediction

 Longer pipelines can’t readily determine branch 

outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay
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MIPS with Predict Not Taken

Prediction 

correct

Prediction 

incorrect
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More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history
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Pipeline Summary

 Pipelining improves performance by 

increasing instruction throughput

 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards

 Structure, data, control

 Instruction set design affects complexity of 

pipeline implementation

The BIG Picture
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MIPS Pipelined Datapath

WB
Right-to-left 

flow leads 

to hazards
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Pipeline registers

 Need registers between stages

 To hold information produced in previous cycle

28



Pipeline Operation

 Cycle-by-cycle flow of instructions through the 

pipelined datapath

 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams for 

load & store
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IF for Load, Store, …
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IF for Load, Store, …
PC+4 is computed,

stored back into the PC,

stored in the IF/ID buffer although it will not be needed in a 

later stage for LW or SW

Instruction word is fetched from memory,

and stored in the IF/ID buffer because it will be needed in 

the next stage.

Write into the buffer
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• Instruction is read from memory using the 

address in PC and is placed in the IF/ID pipeline 

register 

• PC address is incremented by 4 and then written 

back into PC to be ready for the next clock cycle

• This incremented address is also saved in IF/ID 

pipeline register in case it is needed later for an 

instruction

IF for Load, Store, …



ID for Load, Store, …
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ID for Load
Bits of load instruction are 

taken from IF/ID buffer, 

while

new instruction is being 

fetched back in stage 1.

Read register #1 and #2 

contents are fetched and stored 

in ID/EX buffer until needed in 

next stage… #2 won't be 

needed.

PC+4 is passed forward to 

ID/EX buffer...

16-bit field is fetched from IF/ID 

buffer, then sign-extended, then 

stored in the ID/EX buffer for use in 

a later stage.

Read from the buffer
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ID for Load, Store, …

• Instruction portion of IF/ID pipeline register 

supplying 16-bit immediate field, which is sign-

extended to 32 bits, and the register numbers to 

read the two registers

• All three values are stored in the ID/EX pipeline 

register, along with incremented PC address

• Everything might be needed by any instruction 

during a later clock cycle is transferred



EX for Load
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EX for Load

PC+4 is taken from ID/EX 

buffer and added to branch 

offset…

Read register #1 contents 

are taken from ID/EX buffer 

and provided to ALU.

Read register #2 is passed 

forward to EX/MEM buffer, 

for possible use in later 

stage… but won't be 

needed.

Computed branch target 

address is stored in 

EX/MEM buffer to await 

decision in next stage... but 

won't be needed.

ALU result and Zero line 

are stored in EX/MEM 

buffer for use as memory 

address in next stage.

16-bit literal is provided to 

ALU as second operand
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MEM for Load
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MEM for Load

Zero line taken from 

EX/MEM buffer for 

branch control logic 

in this stage…

ALU result is taken from 

EX/MEM buffer and 

passed to Address port of 

data memory.

ALU result also stored in 

MEM/WB buffer for 

possible use in last stage…

Read register #2 contents 

taken from EX/MEM buffer 

and passed to Write data 

port of data memory.

Value on Read data port of 

data memory is stored in 

MEM/WB buffer, awaiting 

decision in last stage..
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WB for Load

Wrong

register

number
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WB for Load

Since load instruction, 

value from data memory is 

selected and passed back 

to register file.

But the Write register port 

is now seeing the register 

number from a different, 

later instruction.
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Corrected Datapath for Load

42

So we fix the register number problem by passing the Write register # from the 

load instruction through the various inter-stage buffers… …and then back, on the correct 

clock cycle.



EX for Store
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EX for Store

Almost the same as for LW…

Read register #2 is passed 

forward to EX/MEM buffer, 

for use in later stage… for 

SW this will be needed.

43



MEM for Store
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MEM for Store

Zero line taken from 

EX/MEM buffer for 

branch control logic 

in this stage…

ALU result is taken from 

EX/MEM buffer and 

passed to Address port of 

data memory.

ALU result also stored in 

MEM/WB buffer for 

possible use in last stage…

Read register #2 contents 

taken from EX/MEM buffer 

and passed to Write data 

port of data memory.



WB for Store
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WB for Store

Since SW instruction, 

neither value will be written 

to the register file… doesn't 

really matter which value 

we send back…



Multi-Cycle Pipeline Diagram

• Form showing resource usage
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Multi-Cycle Pipeline Diagram

• Traditional form
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Single-Cycle Pipeline Diagram

• State of pipeline in a given cycle
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Pipelined Control (Simplified)
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Pipelined Control

 Control signals derived from instruction (as in 

single-cycle implementation)
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Pipelined Control
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Data Hazards in ALU Instructions

 Consider this sequence:

sub $2, $1,$3
and $12,$2,$5
or  $13,$6,$2
add $14,$2,$2
sw  $15,100($2)

 We can resolve hazards with forwarding

 How do we detect when to forward?
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Dependencies & Forwarding
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Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs 

sitting in ID/EX pipeline register

 ALU operand register numbers in EX stage 
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg
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First hazard between sub $2, $1, $3 and and $12, $2, $5 is 

detected when “and” is in EX and “sub” is in MEM because 

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2 (1a) 

Similar to above this time dependency between “sub” and 

“or” can be detected as 

MEM/WB.RegisterRd = ID/EX.RegisterRt = $2 (2b) 

Two dependencies between “sub” and 

”add” are not hazard Another form of forwarding 

but it occurs within reg file 

There is no hazard between “sub” and “sw”

Detecting the Need to Forward



Detecting the Need to Forward

 But only if forwarding instruction will write to a 

register!

 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not $zero

 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0
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Forwarding Paths
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Forwarding Conditions

 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Forwards the 

result from the 

previous instr. to 

either input of 

the ALU 

Forwards the 

result from the 

second previous 

instr. to either 

input of the ALU
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sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

sub

Forwarding Example
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sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

suband

Forwarding Example
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sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

subandor

Forwarding Example



Double Data Hazard

 Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur

 Want to use the most recent

 Revise MEM hazard condition

 Only fwd if EX hazard condition isn’t true
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Revised Forwarding Condition

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01
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Datapath with Forwarding
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Load-Use Data Hazard

Need to stall 

for one cycle
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Load-Use Hazard Detection

 Check when using instruction is decoded in ID stage

 ALU operand register numbers in ID stage are given 
by:

 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when

 ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble
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How to Stall the Pipeline

 Force control values in ID/EX register to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using (current) instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage
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Stall/Bubble in the Pipeline

Stall inserted 

here
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Stall Hardware

 Along with the Hazard Unit, we have to implement the stall

 Prevent the instructions in the IF and ID stages from progressing 

down the pipeline – done by preventing the PC register and the IF/ID 

pipeline register from changing

 Hazard detection Unit controls the writing of the PC (PC.write) and 

IF/ID (IF/ID.write) registers

 Insert a “bubble” between the lw instruction (in the EX stage) and the 

load-use instruction (in the ID stage) (i.e., insert a noop in the 

execution stream)

 Set the control bits in the EX, MEM, and WB control fields of the ID/EX 
pipeline register to 0 (nop). The Hazard Unit controls the mux that 

chooses between the real control values and the 0’s. 

 Let the lw instruction and the instructions after it in the pipeline 

(before it in the code) proceed normally down the pipeline

72



Datapath with Hazard Detection
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Pipeline with and without forwarding



Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid hazards 

and stalls

 Requires knowledge of the pipeline structure
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Control Hazards

• When the flow of instruction addresses is not sequential (i.e., PC = PC 
+ 4); incurred by change of flow instructions

– Conditional branches (beq, bne)

– Unconditional branches (j, jal, jr)

– Exceptions

• Possible approaches

– Stall (impacts CPI)

– Move decision point as early in the pipeline as possible, thereby reducing 
the number of stall cycles

– Delay decision (requires compiler support)

– Predict and hope for the best !

• Control hazards occur less frequently than data hazards, but there is 
nothing as effective against control hazards as forwarding is for data 
hazards
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Branch Hazards

 If branch outcome determined in MEM

PC

Flush these

instructions

(Set control

values to 0)
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Reducing Branch Delay

 Move hardware to determine outcome to ID stage

 Target address adder

 Register comparator

 Example: branch taken
36:  sub  $10, $4, $8
40:  beq  $1,  $3, 7
44:  and  $12, $2, $5
48:  or   $13, $2, $6
52:  add  $14, $4, $2
56:  slt  $15, $6, $7

...
72:  lw   $4, 50($7)   #44+7x4=72 (PC+4 + Imm*4)
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Example: Branch Taken
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Example: Branch Taken
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Data Hazards for Branches

 If a comparison register is a destination of 

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding
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Data Hazards for Branches

 If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding load 

instruction

 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw  $1, addr

beq $1, $4, target
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Data Hazards for Branches

 If a comparison register is a destination of 

immediately preceding load instruction

 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw  $1, addr

beq $1, $0, target
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Dynamic Branch Prediction

 In deeper and superscalar pipelines, branch 

penalty is more significant

 Use dynamic prediction

 Branch prediction buffer (aka branch history table)

 Indexed by recent branch instruction addresses

 Stores outcome (taken/not taken)

 To execute a branch

 Check table, expect the same outcome

 Start fetching from fall-through or target

 If wrong, flush pipeline and flip prediction
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1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted twice!

outer: …
…

inner: …
…

beq …, …, inner
…

beq …, …, outer

 Mispredict as taken on last iteration of inner loop

 Then mispredict as not taken on first iteration of 

inner loop next time around
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2-Bit Predictor

 Only change prediction on two successive mispredictions

86
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Calculating the Branch Target

 Even with predictor, still need to calculate the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can fetch 

target immediately

87
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Addresses of 
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Exceptions and Interrupts

 “Unexpected” events requiring change

in flow of control

 Different ISAs use the terms differently

 Exception

 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt

 From an external I/O controller

 Dealing with them without sacrificing performance is 

hard
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Exceptions in a Pipeline

 Another form of control hazard

 Consider overflow on add in EX stage
add $1, $2, $1

 Prevent $1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set Cause and EPC register values

 Transfer control to handler

 Similar to mispredicted branch

 Use much of the same hardware
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Pipeline with Exceptions

85

• New input value for PC holds the initial address to fetch instruction from in the  event of an exception. 

• A Cause register to record the cause of the exception.

• An EPC register to save the address of the instruction to which we should return. 



Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in parallel

 To increase ILP
 Deeper pipeline

 Less work per stage  shorter clock cycle

 Multiple issue
 Replicate pipeline stages  multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice
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Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses 

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at 

runtime
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Static Multiple Issue

 Compiler groups instructions into “issue 

packets”

 Group of instructions that can be issued on a 

single cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long 

instruction

 Specifies multiple concurrent operations

  Very Long Instruction Word (VLIW)

93



Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary
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MIPS with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

95



Concluding Remarks

 ISA influences design of datapath and control

 Datapath and control influence design of ISA

 Pipelining improves instruction throughput

using parallelism

 More instructions completed per second

 Latency for each instruction not reduced

 Hazards: structural, data, control

 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism

 Complexity leads to the power wall
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Single Cycle, Mult-Cycle, vs. Pipeline

Multiple Cycle Implementation:

Clk

Cycle 1

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

lw IFetch Dec Exec Mem WB

Pipeline Implementation:

IFetch Dec Exec Mem WBsw

IFetch Dec Exec Mem WBR-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2
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Questions


