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 Grading Policy

 Homework 15%

 Midterm 35%

 Final 45%

 Class participation 5%

 Web Page

 http://prof.uok.ac.ir/abdollahpouri/ComArch.html

Course Info
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Course Info

Topics covered

• Introduction, basic computer organization

• Register Transfer Language (RTL) 

• Instruction Set Architecture (ISA)

• Computer Arithmetic

• MIPS ISA and assembly language

• MIPS (single cycle and multi-cycle)

• Pipelining

• Memory Systems

• I/O
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Computer Architecture is the science and art 

of designing, selecting, and interconnecting 

hardware components and designing the 

hardware/software interface to create a 

computing system that meets functional, 

performance, energy consumption, cost, and 

other specific goals.

What is Computer Architecture?
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An analogy to architecture of buildings…

The role of a 

building architect:

The role of a 

Computer architect:
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Here are some specific examples of how knowledge of computer architecture 

can be beneficial:

 A software developer can use their knowledge of computer architecture 

to optimize their code for performance. This can lead to faster and more 

efficient programs.

 A computer engineer can use their knowledge of computer architecture 

to design new computer systems that are more powerful and reliable.

 A cybersecurity expert can use their knowledge of computer 

architecture to identify and exploit vulnerabilities in computer systems.

 A data scientist can use their knowledge of computer architecture to 

design and optimize algorithms for large-scale data processing.

Some motivation to learn computer 

architecture



Abstraction Layers in Modern Systems

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original domain 

of the computer 

architect

(‘50s-’80s)

Domain of recent 

computer 

architecture

(‘90s)

Reliability, 

power, …

Parallel 

computing, 

security, …
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Gate Level



The Computer Systems Stack



The Computer Systems Stack



The Computer Systems Stack



Application requirements vs. 

technology constraints 
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Three key trends in computer 

engineering 
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1. Growing diversity in application requirements 

motivate growing diversity in computing systems 

2. Energy and power constraints motivate transition to 

multiple processors integrated onto a single chip. 

3. Technology scaling challenges motivate new 

emerging processor, memory, and network device 

technologies



Trend 1:Growing diversity in apps & 

systems
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Trend 2: Energy/power 

constraints all modern systems

15

Transition to multicore 

processors 



Trend 3:Emerging device technologies
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Outline

History

Integrated Circuit Design

Performance
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• First generation

Vacuum tube computers (1945~1953)

• Second generation

Transistorized computers (1954~1965)

• Third generation

Integrated circuit computers (1965~1980)

• Fourth generation

Very large scale integrated (VLSI) computers (1980~2000)

• Fifth generation
System-on-chip (SOC) computers (2000~)

Evolution of Digital Computers
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1642, add & sub, Blaise 

Pascal

Abacus, 

3000 BC (?)

Grandfather of Today Computers
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The Babbage

Difference Engine

(1822)

25,000 parts

cost: £17,470

Mechanical computing devices

Used decimal number system

Could perform basic arithmetic

Operations

The first Computer

Problem: Too complex and expensive!
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ENIAC - The first electronic computer (1946)

17,468 vacuum tubes

30 tons

63 m²

150 kW

5,000 simple addition

or subtraction operations

Problem: Reliability issues and excessive power consumption!
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The IAS machine

Developed 1952 by 

John von Neumann
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The Von-Neumann Architecture

 General purpose machine

 Independent of applications

 Flexible & Programmable

 4 main units

- Control unit (Instruction counter)

- Arithmetic unit (Accumulator)

- Input/Output unit (Connection to the outside)

- Main memory (to store data and instructions)

 Interconnected by simple buses

stored-program concept
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The Von-Neumann Architecture
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Program is composed of a sequence of instructions

- Read one after the other from main memory

Program execution can be altered

- Conditional or unconditional jumps

- Change the current execution

- Carried out by loading new value into PC register

Usage of binary numbers

- Just two values allowed per digit: 0/1

- Easy to implement: voltage yes or no

The Von-Neumann Architecture
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Von-Neumann Architecture – Today

 Still the dominant architecture in current systems

- Used in all popular systems / chips

 Only minor modifications

- Control und Arithmetic unit combined

- New memory paths between memory and I/O

Direct Memory Access (DMA)

 Additions to the concept

- Multiple arithmetic units / Multiple CPUs

- Parallel processing



27

Invention of the Transistor

Vacuum tubes invented in 1904 by Fleming

Large, expensive, power-hungry, unreliable

Invention of the bipolar 

transistor (BJT) 1947

Shockley, Bardeen, Brattain –

Bell Labs
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Integrated Circuit (IC)
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First integrated circuit (germanium), 1958

Jack S. Kilby, Texas Instruments

Integrated Circuit (IC)
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Integrated Circuit (IC)



In 1965, Gordon Moore noted that the number of transistors 

on a chip doubled every 18 to 24 months.

Moore’s Law

31
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Outline

History

Integrated Circuit Design

Performance
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Silicon Ingot growth

 Czochralski Process is a Technique in Making Single-

Crystal Silicon

 A Solid Seed Crystal is Rotated and Slowly Extracted from 

a Pool of Molten Si

 Requires Careful Control to Give Crystals Desired Purity 

and Dimensions
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 The Silicon Cylinder is 

Known as an Ingot

 Typical Ingot is About 1 or 2 

Meters in Length

 Can be Sliced into Hundreds 

of Smaller Circular Pieces 

Called Wafers

 Each Wafer Yields Hundreds 

or Thousands of Integrated 

Circuits

Silicon Ingot



CMOS NAND Gate
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Chip Manufacturing Process



Visualizing the dramatic decrease in yield 

with larger dies. 

Effect of Die Size on Yield

120 dies, 109 good 26 dies, 15 good 

Die yield =def (number of good dies) / (total number of dies)

Die cost = (cost of wafer) / (total number of dies  die yield)

= (cost of wafer)  (die area / wafer area) / (die yield)
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Clean Room
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Wafer

Die
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Die



Package Types

 Small Outline Transistor (SOT)  Small Outline Package (SOP)  Dual-In-Line Package (DIP) 

 Plastic/Ceramic Pin Grid Array 

(PPGA/CPGA) 

 Plastic Leaded Chip Carrier 

(PLCC) 

42
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Levels of Integration
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14

1 2 3 4 5 6 7

13 12 11 10 9 8

SSI

Levels of Integration

MSI

LSI

Intel 4004

~2300 transistors
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Levels of Integration

VLSI
Intel Pentium 4

55 million Transistors

ULSI
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GSI intel sandy-bridge (32 nm technology)

(A sheet of paper is about 100,000 nanometers thick. 

A human hair measures roughly 50,000 to 100,000 nanometers in diameter)

Levels of Integration



Inside a Multicore Processor Chip

AMD Barcelona: 4 Processor Cores

3 Levels of Caches
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Design Abstraction Levels
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ICs In Human Life
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Outline

History

Integrated Circuit Design

Performance



B 747

DC-8-50

Performance
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Performance of Aircraft: An Analogy

Aircraft Passengers
Range     

(km)

Speed 

(km/h)

Price       

($M)

Airbus A310 250 8 300 895 120

Boeing 747 470 6 700 980 200

Boeing 767 250 12 300 885 120

Boeing 777 375 7 450 980 180

Concorde 130 6 400 2 200 350

DC-8-50 145 14 000 875 80

Speed of sound  1220 km / h
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Different Views of Performance

Performance from the viewpoint of a passenger: Speed

Note, however, that flight time is but one part of total travel time.
Also, if the travel distance exceeds the range of a faster plane, 
a slower plane may be better due to not needing a refueling stop

Performance from the viewpoint of an airline: Throughput

Measured in passenger-km per hour (relevant if ticket price were 
proportional to distance traveled, which in reality it is not)

Airbus A310 250  895 = 0.224 M passenger-km/hr
Boeing 747 470  980 = 0.461 M passenger-km/hr
Boeing 767 250  885 = 0.221 M passenger-km/hr
Boeing 777 375  980 = 0.368 M passenger-km/hr
Concorde 130  2200 = 0.286 M passenger-km/hr
DC-8-50 145  875 = 0.127 M passenger-km/hr

Performance from the viewpoint of FAA: Safety
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CPU Performance and Speedup

Performance = 1 / CPU execution time 

(Performance of M1) / (Performance of M2) = Speedup of  M1 over M2

=  (Execution time of M2) / (Execution time M1) 

Terminology: M1 is x times as fast as M2 (e.g., 1.5 times as fast)

M1 is 100(x – 1)% faster than M2 (e.g., 50% faster) 

CPU time = Instructions  (Cycles per instruction)  (Secs per cycle)

= Instructions  CPI / (Clock rate)

Instruction count, CPI, and clock rate are not completely independent, 

so improving one by a given factor may not lead to overall execution 

time improvement by the same factor. 
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CPU Execution Time

CPU 

Execution 

Time

Instruction 

Count
CPI Clock 

Cycle Time= X

instructions
cycles/instruction seconds/cycle

seconds

• Improve performance => reduce execution time

– Reduce instruction count (ISA, Programmer, Compiler) 

– Reduce cycles per instruction (ISA, Machine designer)

– Reduce clock cycle time (Hardware designer, Physicist)

X
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Elaboration on the CPU Time Formula

CPU time = IC  CPI  CCT = IC  CPI / (Clock rate)

Clock period (CCT)

Clock rate: 1 GHz = 109 cycles / s (cycle time 10–9 s = 1 ns)

200 MHz = 200  106 cycles / s (cycle time = 5 ns)

CPI (average): Is calculated based on the dynamic instruction mix

and knowledge of how many clock cycles are needed

to execute various instructions (or instruction classes)

Instruction count: Number of instructions executed, not number of

instructions in our program (dynamic count)
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Dynamic Instruction Count

250 instructions

for i = 1, 100 do

20 instructions

for j = 1, 100 do

40 instructions

for k = 1, 100 do

10 instructions

endfor

endfor

endfor

How many instructions 

are executed in this 

program fragment?

Each “for” consists of two instructions:

increment index, check exit condition

2 + 40 + 1200 instructions

100 iterations

124,200 instructions in all

2 + 10 instructions

100 iterations

1200 instructions in all

2 + 20 + 124,200 instructions

100 iterations

12,422,200 instructions in all

12,422,450 Instructions

for i = 1, n

while x > 0

Static count = 326
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Faster steps do not necessarily mean 

shorter travel time. 

Faster Clock   Shorter Running Time

1 GHz 

2 GHz 

4 steps 

Solution 

20 steps 
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Effect of Instruction Mix on Performance

Consider two applications DC and RS and two machines M1 and M2:

Class Data Comp. Reactor Sim. M1’s CPI M2’s CPI
A: Ld/Str 25% 32% 4.0 3.8
B: Integer 32% 17% 1.5 2.5
C: Sh/Logic 16% 2% 1.2 1.2
D: Float   0% 34% 6.0 2.6
E: Branch 19% 9% 2.5 2.2
F: Other 8% 6% 2.0 2.3

Find the effective CPI for the two applications on both machines.

Solution

a. CPI of DC on M1: 0.25  4.0 + 0.32  1.5 + 0.16  1.2 + 0  6.0 + 

0.19  2.5 + 0.08  2.0 = 2.31

DC on M2: 2.54 RS on M1: 3.94 RS on M2: 2.89
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MIPS (million instructions per second)

Example

66 10  CPI

rateClock 

10   timeExecution

count nInstructio





MIPS

Code from

Instruction Counts (in billions)  
for each instruction set

A (1 CPI) B (2 CPI) C (3 CPI)

Compiler 1 5 1 1

Compiler 2 10 1 1

Clock rate = 4GHz          A,B,C : Instruction Classes

• Which  code sequence will execute faster according to MIPS?

• According to execution time?
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CPU clock cycles1 = (5 *1+1*2 +1*3) * 109 = 10 * 109

CPU clock cycles2 = (10*1+1*2+1*3) * 109 = 15 * 109

Execution time  & MIPS

seconds75.3
104

1015
time2

9

9


*

*
Execution

seconds5.2
104

1010 *
time1

9

9


* 

Execution
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Execution time  & MIPS (2) 

 2800
10 seconsd 2.5

101)1(5
 MIPS

6

9

1 





3200
10 3.75

101)1(10
 MIPS

6

9

2






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Measured or estimated execution times for three programs.

Time on 

machine X

Time on 

machine Y

Speedup of 

Y over X

Program A 20 200 0.1

Program B 1000 100 10.0

Program C 1500 150 10.0

Comparing the Overall Performance

Speedup of 

X over Y

10

0.1

0.1

Arithmetic mean

Geometric mean
6.7

2.15

3.4

0.46
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Performance Enhancement-

Amdahl's Law

Speedup due to enhancement E:
ExTime w/o E        Performance w/  E

Speedup(E) = ------------- =   -------------------

ExTime w/  E        Performance w/o E

Suppose that enhancement E accelerates a 

fraction F of the task by a factor S, and the 

remainder of the task is unaffected

64



Amdahl’s Law

ExTimenew = ExTimeold x   (1 - Fractionenhanced) +  Fractionenhanced

Speedupoverall   =
ExTimeold

ExTimenew

Speedupenhanced

=

1

(1 - Fractionenhanced) +  Fractionenhanced

Speedupenhanced
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Amdahl’s Law

 Floating point instructions improved to run 2X; 

but only 15% of actual instructions are FP

Speedupoverall = 1

0.925
= 1.081

ExTimenew = ExTimeold x  (0.85 +  (0.15)/2) = 0.925 x ExTimeold
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Amdahl’s Law

not FP FP

not FP FP

/E

Execution time OLD

Execution time New

Law of diminishing return:

Focus on the common case!
67
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Example:

– If the voltage and frequency of a processing core 

are both reduced by 15% what would be the impact 

on dynamic power?

Another Key Metric: Power Dissipation
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Power Dissipation

Use Multi-core CPUs



Which Programs

 Execution time of what program?

 Best case – your always run the same set of 

programs

 Port them and time the whole workload

 In reality, use benchmarks

 Programs chosen to measure performance

 Predict performance of actual workload

 Saves effort and money

 Representative? Honest? 

70



Benchmarks: SPEC2000

 System Performance Evaluation Cooperative

 Formed in 80s to combat benchmarketing

 SPEC89, SPEC92, SPEC95, now SPEC2000

 12 integer and 14 floating-point programs

 Sun Ultra-5 300MHz reference machine has score 

of 100

 Report GM of ratios to reference machine
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Benchmarks: SPEC 2000
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Eight Great Ideas in Computer Architecture

 Design for Moore’s Law

 Use abstraction to simplify design

 Make the common case fast

 Performance via parallelism

 Performance via pipelining

 Performance via prediction

 Hierarchy of memories

 Dependability via redundancy
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Questions


