Ui 35S oLSLidinils
University of Kurdistan
bl 3g5 S§5lj

Department of Computer Engineering
University of Kurdistan

Computer Architecture
Introduction

By: Dr. Alireza Abdollahpouri



Course Info

» Course Textbooks

» D. A. Patterson and J. L. Hennessy, Computer Organization
and Design, Sth Edition: The Hardware/Software Interface,
Morgan Kaufman, Sth Ed.

» M. Mano, Computer System Architecture, Prentice-Hall, 3rd
Ed., 1993.

> Instructor

Dr. Alireza Abdollahpouri
Email: abdollahpouri@gmail.com



mailto:abdollahpouri@gmail.com

Course Info

» Grading Policy

» Homework 15%

» Midterm 35%

» Final 45%

» Class participation 5%
» Web Page

» http://prof.uok.ac.ir/abdollahpouri/ComArch.html



http://prof.uok.ac.ir/abdollahpouri/ComArch.html

Course Info

Topics covered

 Introduction, basic computer organization
* Register Transfer Language (RTL)
 Instruction Set Architecture (ISA)

« Computer Arithmetic

 MIPS ISA and assembly language
 MIPS (single cycle and multi-cycle)

* Pipelining

« Memory Systems

« 1/O




What is Computer Architecture?

Computer Architecture is the science and art
of designing, selecting, and interconnecting
hardware components and designing the
hardware/software interface to create a
computing system that meets functional,
performance, energy consumption, cost, and
other specific goals.




An analogy to architecture of buildings...

, Construction  Buildings
Materials /\Plans " THouses

The role of a

Steel Desig Offices ildi i .
Concrete Apartments building architect:
Brick Goals Stadiums
Wood unction Museums
Glass Cost
Safety

Ease of Construction
Energy Efficiency
Fast Build Time

Manufacturing Computers
“TeChHOIqu”/\ Plans /——& DeSktOpS

Logic Gates Desig Servers
SRAM UMobile Phones
DRAM Goals Supercomputers
The role of a Circuit Techlniques unction Game Consoles
Computer architect: Packaging Performance Embedded
Magnetic Storage Reliability

Flash Memory  Cost/Manufacturability
Energy Efficiency
Time to Market




Some motivation to learn computer
architecture

Here are some specific examples of how knowledge of computer architecture
can be beneficial:

A software developer can use their knowledge of computer architecture
to optimize their code for performance. This can lead to faster and more
efficient programs.

A computer engineer can use their knowledge of computer architecture
to design new computer systems that are more powerful and reliable.

A cybersecurity expert can use their knowledge of computer
architecture to identify and exploit vulnerabilities in computer systems.

A data scientist can use their knowledge of computer architecture to
design and optimize algorithms for large-scale data processing.




Abstraction Layers in Modern Systems

Original domain
of the computer
architect
(‘50s-’80s)

Application

Algorithm

Programming Language

Operating System/Virtual Machine

Parallel
computing,
security, ...

Instruction Set Architecture (ISA)

Microarchitecture

Register-Transfer Level (RTL)

Devices

Physics

A

Domain of recent
computer
architecture
(‘90s)

I Reliability,

power, ...

v




The Computer Systems Stack

Application

—— Sort an array of numbers

Algorithm

2,6,3,8,4,5->2.3,4,5,6,8

Programming Language

— Ny

Operating System

S A A —

Instruction Set Architecture

Microarchitecture

2. Move minimum number into output array
3. Repeat steps 1 and 2 until finished

Register-Transfer Level

\ Insertion sort algorithm
1. Find minimum number in input array

Gate Level

C implementation of insertion sort
void isort( int b[], int a[], int n ) {

Circuits

for ( int idx, k = 0; k < n; k++ ) {

Computer Engineering

Devices

int min = 100;
for ( int i = 0; i < n; i++ ) {

O D . . &

Technology

— A A A

if ( a[i] < min ) {

min = a[i];
idx i;

}
}
b[k]
al[idx]
}
}

min;
100;

yﬂ“
Q University of Kurdistan



The Computer Systems Stack

Application Mac OS X, Windows, Linux
Algorithm Handles low-level hardware management
.? . Programming Language _ |
§ | Operating System } t,
S| [ Instruction Set Architecture | " ‘\4
LU Microarchitecture J \
% | Register-Transfer Level | MIPS32 Instruction Set
a ( Gate Level } Instructions that machine executes
@) Circuits blez $a2, done
O : move S$a7, S$Szero
> Devices ) 1li $t4, 99
Technology move S$a4, $al

move Svl, S$zero

1li Sa3, 99

1w Sa5, 0(sad)
addiu Sa4, $Sa4, 4
slt Sa6, S$a5, Sa3
movn S$vO0, Svl1l, Sa6
addiu S$Sv1, $vi, 1
movn S$a3, $a5, S$ab6




The Computer Systems Stack

Computer Engineering

Application

Algorithm

Programming Language

Operating System

Instruction Set Architecture

Microarchitecture

Register-Transfer Level

Gate Level

|

Circuits

Devices

Technology

How data flows
through system

Boolean logic gates
and functions

Combining devices
— to do useful work

) \ Transistors and wires

Silicon process
technology

b
aji@f

L




Application requirements vs.
technology constraints

Application

Algorithm

Programming language

Operating system

Instruction set architecture

Microarchitecture

Register-transfer level

Gate level

Circuits

Devices

Technology

Application requirements
Suggest how to improve architecture
Provide revenue to fund development

Computer architects provide feedback
to guide application and technology research
directions

Technology constraints
Restrict what can be done efficiently
New technologies make new arch possible

%/ University of Kurdistan

12



Three key trends in computer
engineering

1. Growing diversity in application requirements
motivate growing diversity in computing systems

2. Energy and power constraints motivate transition to
multiple processors integrated onto a single chip.

3. Technology scaling challenges motivate new
emerging processor, memory, and network device

technologies

13




Trend 1:Growing diversity in apps &

systems

soIeS Computing: From Handhelds to Servers
. _,'./',o S

= 8
® Internet Routers

"% GPS Devices
-~/ and Satellites

Humanoid Robots
Unmanned Vehicles

3 Wearable
‘J, ‘o), Computing

Sensor
Networks

!

Medical
Devices

5\‘.
% :

:y‘.v

Smart Home Wearable Activity Monitors

%/University of Kurdistan

14



Trend 2: Energy/power
constraints all modern systems

> Energy Energy Ops
ower = = X 1
Second 0p5 Second 5 100W Workstation
= Power Constraint
Power Energy Q
o
Chip packaging Battery life A
Chip cooling Electricity bill - W Handneld
System noise Mobile device weight % e u
Case temperature o
Data-center air conditioning Performance (Ops/Second) >

XY University of Kurdistan

15




Trend 3:Emerging device technologies

15

10
()
o
10 B
10 "R
0}
Q
-o 0
10°-8 Vertical MOSFETs
3 Graphene
&2 Carbon Nanotubes
100 @ Nanorelays
2 Quantum Computing
kS) Molecular Computing
5 B Memristers
A © Phase-Change Mem
3 Spintronics
10 - 3D Integration
10 Electromechanical Relay Vacuum Tube  Transistor

Nanophotonics

1900 10 20 30 40 50 60 70 80 90 20QQ 10

XY University of Kurdistan

16



Outline

History
Integrated Circuit Design

Performance

17



Evolution of Digital Computers

* First generation
Vacuum tube computers (1945~1953)
« Second generation
Transistorized computers (1954~1965)
« Third generation
Integrated circuit computers (1965~1980)
 Fourth generation
Very large scale integrated (VLSI) computers (1980~2000)

« Fifth generation
System-on-chip (SOC) computers (2000~)

18



Grandfather of Today Computers

Abacus,
3000 BC (?)

1642, add & sub, Blaise
Pascal

XY University of Kurdistan

19



The first Computer

',_‘m'n:

The Babbage
Difference Engine
(1822)

25,000 parts

cost: £17,470

o

e e T et T T =1

i

it | 1 %
(“J -

S =

1 W=

1 = s : . - X | ——— |, m— -
[ e e e e e e B et e e
\‘,‘ ? '

S IR e Rt )

e el Peld chag hde e

[ -—‘“Mf:n

:?“ . ‘E.F_A

Mechanical computing devices
Used decimal number system
Could perform basic arithmetic
Operations

e | |

y A

0. |

‘ - H =
i 2 G E Sl L e W e
= T | \ L) ! o 4 . A g l ] [}
::.::—,‘;T-:—g—. —5-—” —g.=====:. R e
\ ;: - = = = Sl | - ] : = | :
‘A
i

Problem: Too complex and expensive!

20

XY University of Kurdistan



ENIAC - The first electronic computer (1946)

4 17,468 vacuum tubes
- 30 tons
. 63 m?
gt 150 KW
Bl R 5 000 simple addition
Y B B G @ Or subtraction operations




The IAS machine

Developed 1952 by
John von Neumann

XY University of Kurdistan

22



The Von-Neumann Architecture

stored-program concept

General purpose machine

Independent of applications

Flexible & Programmable

4 main units

- Control unit (Instruction counter)

- Arithmetic unit (Accumulator)

- Input/Output unit (Connection to the outside)
- Main memory (to store data and instructions)
 Interconnected by simple buses

DOO00

23



The Von-Neumann Architecture

Central Processing Unit
P
Control Unit J
e
-
Input = Arithmetic Logic Unit - Output
e
Registers
MAR MDR PC Acc
R 4 ,\
Data Memory Program
. A




The Von-Neumann Architecture

1 Program is composed of a sequence of instructions
- Read one after the other from main memory

1 Program execution can be altered
- Conditional or unconditional jumps
- Change the current execution
- Carried out by loading new value into PC register

] Usage of binary numbers
- Just two values allowed per digit: 0/1
- Easy to implement: voltage yes or no

Xy University of Kurdistan 25



Von-Neumann Architecture — Today

d Still the dominant architecture in current systems
- Used in all popular systems / chips

d Only minor modifications
- Control und Arithmetic unit combined
- New memory paths between memory and I/O
Direct Memory Access (DMA)

 Additions to the concept
- Multiple arithmetic units / Multiple CPUs
- Parallel processing

26



Invention of the Transistor

Vacuum tubes invented in 1904 by Fleming
Large, expensive, power-hungry, unreliable

Invention of the bipolar
transistor (BJT) 1947
Shockley, Bardeen, Brattain —
Bell Labs

27



Integrated Circuit (IC)

3t ‘
3 ;,_ ;:
Sii s > 1%
2% 44 ire
S digrainasa it
di
s ik R T A=
3 ; Ol O O PLRS
: Ei e e L I
351 i D, ) e f’r‘-’"‘,&‘f»
j '&’Lg‘r H R Yo oCc 6o CrC ‘
N T TTE R SetPeis fraedtes m
T 1

University of Kurdistan

28



Integrated Circuit (IC)

v P

First integrated circuit (germaim), 1958
Jack S. Kilby, Texas Instruments

XY University of Kurdistan

29



Integrated Circuit (IC)

e
//

plastic
case

v

6?1inch

XY University of Kurdistan

30



Moore’s Law

transistors
10,000,000,000
Dual-Core Inted® tanium® 2 Processor
1,000,000,000
MOORE'S LAW Intel* Itanium® 2 Processar .~
Intel Hanium® Processor
ntel Pentium® 4 Pruessnr_l/‘ 100,000,000
Intel Pentium® Bl Pm:u?‘r
Intel* Pentium® Il Processor 4 10,000,000
Intel® Pentium® Proce I‘.I-DI"__...-"'-#
Intel486 Processer |-
- 1,000,000
Intel386™ Processor //
286
= 100,000
ausqiff
8080 ,/ 10,000
anna_._,f-l
4004 @
1,000

1970 1975 1980 1985 1990 1985 2000 2005 2070

In 1965, Gordon Moore noted that the number of transistors
on a chip doubled every 18 to 24 months.

%/ University of Kurdistan



Outline

History
Integrated Circuit Design

Performance

32



Silicon Ingot growth

» Czochralski Process is a Technique in Making Single-
Crystal Silicon

» A Solid Seed Crystal is Rotated and Slowly Extracted from
a Pool of Molten Si

» Requires Careful Control to Give Crystals Desired Purity
and Dimensions

33

XY University of Kurdistan



Silicon Ingot

The Silicon Cylinder is
Known as an Ingot

Typical Ingot is About 1 or 2
Meters in Length

Can be Sliced into Hundreds
of Smaller Circular Pieces
Called Wafers

Each Wafer Yields Hundreds
or Thousands of Integrated
Circuits

34



CMOS NAND Gat

* NAND logic built with CMOS technology

=

vdd

~

vdd

QOout

MMMMMM

IIIIIIIIII

35



Chip Manufacturing Process

Silicon ingot I Blank wafers .:
Slicer |
| 20 to 30 processing steps
|
P = = =y [P = = = L
. . . r L - - - -
| Tes'ted | | Individual dies | | Patterned wafers
| %19: | I (one afer) |
. W w I . | [
Bond die to I Tr D | - .
—— Bl g I<_I_ 18 «—— HE ) .<—|— Dicer
package | ] .' ] tester I & '.
w s
I N I I o I
F= =777
| Tested packaged dies |
| :
pare |1 7

' M — —bh Ship to customers

tester | E :
I — | | =

|

S




Effect of Die Size on Yield

120 dies, 109 good 26 dies, 15 good

Visualizing the dramatic decrease in yield
with larger dies.

Die yield =4, (number of good dies) / (total number of dies)

Die cost = (cost of wafer) / (total number of dies x die yield)
= (cost of wafer) x (die area / wafer area) / (die yield)

37



: ST RE T ﬂ a..
g Bt E Wk

o v— e

Sar Bar ‘See Sor BeoT

e : ,mn&&ﬁswa,mﬁﬂﬁmaﬁl m..w. m
; .u:nnu:zun 3T 3T 3E uuﬂA -

: _n f

!ﬂ
ﬂﬂﬂ.ﬂ“-vﬂ lﬂ“ﬂa 2 B
X It3cy

x '4 o

5
Tar ‘s
"
: 7

n

- == _a
Bt 3t ar gy
E R 8

AN

tas LTS

. A o




Clean Room

XY University of Kurdistan

39



ul o nfa:a d'&‘\m-nm

&»&'&J g

University of Kurdistan

40



plastic
case

XY University of Kurdistan

41



Package Types

> Small Outline Transistor (SOT) Small Outline Package (SOP) Dual-In-Line Package (DIP)

Plastic/Ceramic Pin Grid Array Plastic Leaded Chip Carrier
(PPGA/CPGA) (PLCC)

42




Levels of Integration

Small-Scale Integration SSI <100 1963
Medium-Scale Integration MSI 100-300 1970
Large-Scale Integration LS| 300 - 30000 1975
Very Large-Scale Integration VLSI 30000 - 1million 1980
Ultra-Large Scale Integration ULSI >Tmillion 1990
Giga Scale Integration GSlI >1billion 2010

43



Levels of Integration

SSI

ERH

[ 3

D,

)

LSI

Intel 4004
~2300 transistors

44



Levels of Integration

R i SRR AT I AT A

Intel Pentium 4
55 million Transistors

University of Kurdistan

45



Levels of Integration

| Controller|

including
Display;
DMl and
Misc. [/0 ;

GS| intel sandy-bridge (32 nm technology)

(A sheet of paper is about 100,000 nanometers thick.
A human hair measures roughly 50,000 to 100,000 nanometers in diameter)

Z/University of Kurdistan

46



Inside a Multicore Processor Chip

AMD Barcelona: 4 Processor Cores

!

!

3 Levels of Caches

m
SR

HT PHY, link 2

HT PHY, link 3

2MB
Shared
L3
Cache

| HT PHY, link 1

Slow I/0

Fuses

128-bit FPU

Load/ | L1 Data
Store Cache 512kB

L2

Execution| L2 Cache

Fetch/ ct
Decode/ | L1 Instr
Branch | Cache

Core 2

Northbridge

Core 4

Core 3

HT PHY, link 4

Slow I/0O

Fuses

<I7T TJOO

47



Design Abstraction Levels

SYSTEM

MODULE

CIRCUIT

DEVICE

XY University of Kurdistan

48



|ICs In Human Life

Hearing aids
Cell Phones Digital Cameras

Automotive

49

%/University of Kurdistan



Outline

History
Integrated Circuit Design

Performance

50



Performance




Performance of Aircraft: An Analogy

Aircraft Passengers R(i?ng)e ﬁ(pn?/ehci F()gl\(/:l)e
Airbus A310 250 8 300 895 120
Boeing 747 470 6 700 980 200
Boeing 767 250 12 300 885 120
Boeing 777 375 7 450 980 180
Concorde 130 6 400 2 200 350
DC-8-50 145 14 000 875 80

Speed of sound ~ 1220 km / h

52



Different Views of Performance

Performance from the viewpoint of a passenger: Speed

Note, however, that flight time is but one part of total travel time.
Also, if the travel distance exceeds the range of a faster plane,
a slower plane may be better due to not needing a refueling stop

Performance from the viewpoint of an airline: Throughput

Measured in passenger-km per hour (relevant if ticket price were
proportional to distance traveled, which in reality it is not)

Airbus A310 250 x 895 = 0.224 M passenger-km/hr
Boeing 747 470 x 980 = 0.461 M passenger-km/hr

Boeing 767 250 x 885 = 0.221 M passenger-km/hr
Boeing 777 375 x 980 = 0.368 M passenger-km/hr
Concorde 130 x 2200 = 0.286 M passenger-km/hr
DC-8-50 145 x 875 =0.127 M passenger-km/hr

., Performance from the viewpoint of FAA: Safety

53

Xy University of Kurdistan



CPU Performance and Speedup

Performance = 1/ CPU execution time

(Performance of M,) / (Performance of M,) = Speedup of M, over M,
= (Execution time of M,) / (Execution time M,)

Terminology: M, is xtimes as fast as M, (e.g., 1.5 times as fast)
M, is 100(x —1)% faster than M, (e.g., 50% faster)

CPU time = Instructions x (Cycles per instruction) x (Secs per cycle)
= Instructions x CPI / (Clock rate)

Instruction count, CPI, and clock rate are not completely independent,
so improving one by a given factor may not lead to overall execution
time improvement by the same factor.

54



CPU Execution Time

//seconds
CPU _ Instruction , cpj y  Clock
Execution Count Cycle Time

— <

Instructions

cycles/instruction Seconds/cycle

Improve performance =>reduce execution time
— Reduce instruction count (ISA, Programmer, Compiler)
— Reduce cycles per instruction (ISA, Machine designer)
— Reduce clock cycle time (Hardware designer, Physicist)

~

55



Elaboration on the CPU Time Formula

CPUtime=IC x CPlI x CCT =I1C x CPI/ (Clock rate)

Instruction count: Number of instructions executed, not number of
Instructions in our program (dynamic count)

CPI (average): Is calculated based on the dynamic instruction mix
and knowledge of how many clock cycles are needed
to execute various instructions (or instruction classes)

Clock rate: 1 GHz =10°cycles /s (cycletime 102 s =1ns)
200 MHz = 200 x 10° cycles /s (cycle time =5 ns)

Clock period (CCT)

56




Dynamic Instruction Count

How many instructions
are executed in this
program fragment? .-

250 instructions .~~~

________________________________________________

fori=1,100do’

20 instructions
forj=1,100do '
4Q_ instructions :

fork=1,100do | |
10 instructions .

___________________________________

Static count = 326

o1

| 2+10instructions

«Each “for” consists of two instructions:
" increment index, check exit condition

12,422,450 Instructions

.................. 2 + 20+ 124,200 instructions

100 iterations
12,422,200 instructions in all

----------- 2 +40 + 1200 instructions

100 iterations
124,200 instructions in all

fori=1,n
whilex >0

100 iterations
1200 instructions in all

Xy University of Kurdistan

57



Faster Clock # Shorter Running Time

Solution

O

4 steps

20 steps

Faster steps do not necessarily mean
shorter travel time.

58




Effect of Instruction Mix on Performance

Consider two applications DC and RS and two machines M; and M.;:

Class Data Comp. Reactor Sim. M,’s CPI M,’s CPI
A: Ld/Str 25% 32% 4.0 - 3.8
B: Integer 32% 17% 1.5 2.5
C: Sh/Logic 16% 2% 1.2 1.2
D: Float 0% 34% 6.0 2.6
E: Branch 19% 9% 2.5 2.2
F: Other 8% 6% 2.0 2.3

Find the effective CPI for the two applications on both machines.
Solution

a. CPlofDConM;:025x4.0+032x15+0.16x1.2+0x6.0+
0.19x25+0.08x2.0=2.31
DC on M,: 2.54 RS on M;: 3.94 RS on M,: 2.89

59

XY University of Kurdistan



MIPS (million instructions per second)

Instruction count  Clock rate

MIPS = : : 5 = 5
Execution time x10 CPI x10
Example
Instruction Counts (in billions)
Code from for each instruction set
A (1 CPI) B (2 CPI) C (3 CPI)
Compiler 1 5 1 1
Compiler 2 10 1 1
Clock rate = 4GHz A,B,C : Instruction Classes

Which code sequence will execute faster according to MIPS?
According to execution time?

XY University of Kurdistan

60



Execution time & MIPS

CPU clock cyclesl = (5 *1+1*2 +1*3) * 10° = 10 * 10°
CPU clock cycles2 = (10*1+1*2+1*3) * 10° = 15 * 10°
10* 10°

Execution timel= =2.5seconds
4*10°

* 9
Execution time2 =D 109 =3.75 seconds
4 *10

61



Execution time & MIPS (2)

(5+1+1)%<10°

= 2800
2.5seconsd =< 10°

MIPS =

MIPS, = (10+1+1)x10" _ 3200

3.75x%x10°

62



Comparing the Overall Performance

Measured or estimated execution times for three programs.

Geometric mean

Time on Time on | Speedup of
machine X | machineY | Y over X
Program A 20 200 0.1
Program B 1000 100 10.0
Program C 1500 150 10.0
Arithmetic mean 6.7

2.15

Speedup of
XoverY

10
0.1
0.1

3.4
0.46

63



Performance Enhancement- | &
Amdahl's Law

Speedup due to enhancement E:

ExTime w/o E Performance w/ E
Speedup(E) = ————————————- = e

ExTime w/ E Performance w/o E

I — [

Suppose that enhancement E accelerates a
fraction F of the task by a factor S, and the
remainder of the task is unaffected

64

&y University of Kurdistan



Amdahl’s Law

ExTime, ., = EXTime, 4 X | (1 - Fraction ,hanceq) ¥ Fraction

enhanced
| Speedupenhanced_
_ 1
ExTime,q
Speedup = = i '
overa ExTime, (1 - Fractiong,nancea) ¥ Fractiongnnanced

Speed u penhanced

65




Amdahl’s Law

» Floating point instructions improved to run 2X;
but only 15% of actual instructions are FP

ExTime

new ~—

ExTime, 4 X (0.85+ (0.15)/2) = 0.925 x ExTime,4

Speedup,yeran = L = 1.081

0.925

66



Amdahl’s Law

Execution time OLD

:

Execution time New

not FP

Law of diminishing return:
Focus on the common case!

67

&y University of Kurdistan



Another Key Metric: Power Dissipation

Example:
— If the voltage and frequency of a processing core
are both reduced by 15% what would be the impact

on dynamic power?

Power p .~ Cx(Vx0.85)°x (F x 0.85) 3
Save = - — =085 =061
Pold CxV xF

68




Power Dissipation

And Power Density Grows

Sun's
b Surface
ROk

N zle

Watts/cm 2

1386
1486

1.5p 1p 0.7p0  05p 035p 025p 0.18u 0.13p 0.1p  0.07pn

including
Display;
DMl and
Misc: /0

University of Kurdistan



Which Programs

» Execution time of what program?

» Best case — your always run the same set of
programs
» Port them and time the whole workload

» Inreality, use benchmarks

» Programs chosen to measure performance
Predict performance of actual workload
Saves effort and money
Representative? Honest?

YV YV VY

70



Benchmarks: SPEC2000

» System Performance Evaluation Cooperative
» Formed in 80s to combat benchmarketing
» SPECS89, SPEC92, SPEC95, now SPEC2000

» 12 integer and 14 floating-point programs

» Sun Ultra-5 300MHz reference machine has score
of 100

» Report GM of ratios to reference machine

71




Benchmarks: SPEC 2000

12 Integer benchmarks (C and C++)

14 FP benchmarks (Fortran 77, 90, and C)

Name Description Name Description
gzip Compression wupwise | Quantum chromodynamics
vpr FPGA placement and routing swim Shallow water model
gcc GNU C compiler mgrid Multigrid solver in 3D potential field
mcf Combinatorial optimization applu Partial differential equation
crafty Chess program mesa Three-dimensional graphics library
parser Word processing program galgel Computational fluid dynamics
eon Computer visualization art Neural networks image recognition
perlbmk Perl application equake Seismic wave propagation simulation
gap Group theory, interpreter facerec Image recognition of faces
vortex Object-oriented database ammp Computational chemistry
bzip2 Compression lucas Primality testing
twolf Place and route simulator fma3d Crash simulation using finite elements
sixtrack High-energy nuclear physics
apsi Meteorology: pollutant distribution

%/University of Kurdistan

72



Eight Great Ideas in Computer Architecture

Design for Moore’s Law

Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining

Performance via prediction

vV VvV VvV V V V V

Hierarchy of memories

... » Dependability viaredundancy

&y University of Kurdistan



» Questions




